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Abstract

We consider the job shop scheduling problem unit–Jm, where each job is processed once on each ofm given machines.
Every job consists of a permutation of tasks for all machines. The execution of any task on its corresponding machine
takes exactly one time unit. The objective is to minimize theoverall completion time, called makespan. The contribution
of this paper are the following results: (i) For any input instance of unit–Jm with d jobs, the makespan of an optimum
schedule is at mostm + o(m), for d = o(m1/2). This improves on the upper boundO(m + d) given in [5] whereO
hides a constant equal to two as shown in [7]. Ford = 2 the upper bound is improved tom + ⌈ √m ⌉. (ii) There exist
input instances of unit–Jm with d = 2 such that the makespan of an optimum schedule is at leastm + ⌈ √

m ⌉, i.e.,
our upper bound ford = 2, see result (i), cannot be improved. (iii) We present a randomized on-line approximation
algorithm for unit–Jm with the best known approximation ratio ford = o(m1/2). (iv) There is no deterministic on-line
algorithm with a competitive ratio better than4/3 for unit–Jm with two jobs, and for three or more jobs, there is no
deterministic on-line algorithm which is better than 1.5 competitive. Compared with the expected competitive ratio of(iii)
which tends to 1, this shows that for unit–Jm randomization is very powerful compared with determinism.For two and
three jobs, deterministic on-line algorithms with competitive ratios tending to4/3 and 1.5 respectively are presented.
(v) A deterministic approximation algorithm for unit–Jm is described that works in quadratic time for constantd and
has an approximation ratio of1 + 2d/⌊√m ⌋ for d ≤ 2 log

2
m.
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1. Introduction

Minimizing the makespan for general job shop
scheduling is one of the fundamental optimization
problems. It is NP-hard, and Williamson et al. [9]
proved that the minimum makespan is not even ap-
proximable in polynomial time within5/4 − ε for any
ε. Moreover, no constant approximation algorithm is
known, see Goldberg et al. [3] and Shmoys et al. [8].

Many job shop scheduling models have been identi-
fied as having a number of practical applications. But
even severely restricted models remain strongly NP-
hard. In this paper, we consider a problem setting that
relates to finding optimum schedules for routing pack-
ets through a network, see [5]. It is a well-studied ver-
sion of job shop scheduling withm different machines
and unit length tasks, denoted byunit–Jm. There ared
jobs J1, J2, . . . , Jd for some integerd ≥ 2. Each job
consists of a sequence ofm tasks, such that each ma-

⋆ Supported in part by SNF grant 200021-107327/1

chine processes exactly one task of the job. Therefore,
for each job the order of the tasksσ1, σ2, . . . , σm deter-
mines a permutation of them machines, whereσi re-
quires processing on thei-th machine. As in the general
job shop, each machine can process only one task at a
time and each job must be executed on the machines in
the order given by its permutation. A feasible schedule
is an assignment of starting times to tasks that satis-
fies all stated restrictions. The makespan of a schedule
is the maximum over the completion times of all jobs.
The objective is to minimize the makespan over all fea-
sible schedules. The problemunit–Jm is NP-hard for
m ≥ 3, see Lenstra and Rinnooy Kan [6].

The algorithm of Goldberg et al. [3] improved a result
of Shmoys et al. [8] and provides an approximation ra-
tio O((log2 m)/(log2 log2 m)2) for unit–Jm. Instances
with two jobs have been shown by Brucker [1] to be
solvable in linear time. Later, we shall see that a straight-
forward extension of this algorithm leads to anO(md)
time algorithm for any input instance ofunit–Jm with
d jobs. Leighton et al. [4,5] proved that there exists al-
ways a schedule with makespanO(m + d). This pro-

c© 2007 Preeminent Academic Facets Inc., Canada. Online version: http://journals.hil.unb.ca/index.php/AOR. All rights reserved.
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vides a randomized constant approximation algorithm
for this problem. The constant is equal to two and was
determined by Scheideler [7]. Feige and Scheideler [2]
proved that the bound does not extend to the case of
arbitrary task lengths.

In this paper, we analyze the hardest input instances
of unit–Jm. As already mentioned, finding the optimal
makespan of job shop instances with two jobs is solvable
in linear time. Therefore, in this paper, the term hard
instance is used in the sense of makespan length only.
Our observations lead to the design of a randomized on-
line algorithm that solvesunit–Jm with d jobs in linear
time with expected approximation ratio that tends to 1
for d = o(m1/2). The contributions of this paper can
be formulated as follows.
(1) The makespan of an optimum schedule is at most

m + 2d
√

m;

this amounts tom + o(m) for every problem in-
stance ofunit–Jm with d = o(m1/2) jobs, and
thus, for this case, improves on the upper bound
O(m+ d) derived by Leighton et al. [5], whereO
hides a constant of two as shown in [7]. Ford = 2
we prove the stronger upper boundm + ⌈√m⌉.

(2) There exist input instances ofunit–Jm with two
jobs such that every schedule has a makespan of
at least

m +
√

m.

Hence, the result ford = 2, see (i), cannot be
improved.

(3) For every positive integerm, there is a randomized
on-line approximation algorithm that solvesunit–
Jm in linear time with an expected approximation
ratio of

1 +
2d√
m

;

this amounts to1+o(1) for d = o(m1/2). These re-
sults demonstrate an extreme power of randomness
for unit–Jm for several reasons. First of all our
randomized on-line algorithm is competitive with
respect to the makespan of an optimum solution.
Ford = o(m1/2) the algorithm is the best approx-
imation algorithm forunit–Jm. We do not know
any off-line polynomial-time approximation algo-
rithm with an approximation ratio that would tend
to 1 for d = o(m1/2) with growingm. Moreover,
no deterministic on-line algorithm can achieve a
makespan better thand · (m − 1)/ log2 d [5].

(4) For every on-line algorithm forunit–Jm, we
present an input instance withd = 2 such that
the algorithm results in a makespan of at least
m + m/3. We also present a deterministic 4/3-
competitive on-line algorithm for input instances
of unit–Jm with d = 2. Similarly, for every deter-
ministic on-line algorithm withd = 3, we present
an input instance such that the algorithm results in
a makespan of at leastm + m/2 and we present a
deterministic on-line algorithm that has a compet-
itive ratio tending to 1.5 withm growing for input
instances ofunit–Jm with d = 3. We show that
there is no deterministic on-line algorithm with
d = 2 and a competitive ratio better than4/3, and
for d ≥ 3, the competitive ratio of every deter-
ministic on-line algorithm is at least 1.5. This is
significantly worse than the expected competitive
ratio tending to 1 of the randomized on-line al-
gorithm of (iii). This clearly shows the power of
randomization for the on-line version ofunit–Jm.

(5) We present a deterministic approximation algo-
rithm that is efficient at least for smalld’s in com-
parison withm. Its run-time isO(d2m2), and it
has an approximation ratio of at most

1 +
2d

⌊√m ⌋

which tends to 1 with growingm for d =
o(log2 m).

The paper is organized as follows. Section 2. presents
a geometrical representation of the input instances of
unit–Jm that is essential for a transparent analysis of
unit–Jm. In Section 3. we present some hard input in-
stances with two jobs only. Section 4. shows the ex-
istence of efficient schedules for all input instances of
unit–Jm. In Section 5. the randomized algorithm with
the properties as described in (iii) is given. In Section
6. we give hard instances and algorithms for on-line
unit–Jm and compare them with the previous random-
ized results. Our deterministic approximation algorithm
is presented in Section 7.

2. A geometrical representation of instances

We start with the representation of input instances
with two jobs that was employed in [1] to design a linear
time algorithm for this special case ofunit–Jm.

Let (i1, . . . , im) and(j1, . . . , jm) be two permuta-
tions of(1, 2, . . . , m) that represent the input instance
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(σi1 , σi2 , . . . , σim
), (σj1 , σj2 , . . . , σjm

) of unit–Jm.
We consider a gridGm of sizem × m, where for all
k, l ∈ {1, . . . , m} the k-th row of Gm is labeled by
jk and thel-th column ofGm by il. A pair (k, l), i.e.,
the intersection of thek-th row and thel-th column, is
called anobstacle, if and only if il = jk. The corre-
sponding square is depicted by a black box.
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(a) (b)

Fig. 1. A hard input instance ofunit–Jm with two jobs and
nine machines.

Fig. 1a illustrates theG9 of the input instance
with two jobs that are given by the two permutations
(1, 2, 3, 4, 5, 6, 7, 8, 9) and (1, 3, 2, 6, 5, 4, 8, 7, 9). The
term obstacle is motivated by the following observa-
tion. Assume that the first job has executed its first
l − 1 tasks and the second job its firstk − 1 tasks. If
il = jk, then both tasksσil

andσjk
require the same

machine and therefore, only one of the two jobs can
continue its execution in the next time unit and the
other one isdelayed. Otherwise, both jobs can proceed
simultaneously.

We assign to the gridGm the Graph(Gm)=(V, E),
whereV consists of all vertices of the grid and the set
E includes all orthogonal edges of the grid. Addition-
ally, E contains diagonal edges that connect the upper-
left corner with the lower-right corner of a grid square
that is not an obstacle. Fig. 1b shows the corresponding
Graph(G9) of G9 given in Fig. 1a. Any feasible sched-
ule is represented by a path from the upper-left corner
of G9 to the lower-right corner ofG9. The path consists
of edges of Graph(G9), where each edge represents one
unit of time. A vertical grid edge indicates that in this
time unit, a task of the first job isdelayed; a horizontal
grid edge indicates adelay of a task of the second job;
a diagonal edge tells that both jobs are processed at the
same time with no delay.

An optimum schedule corresponds to a shortest path

from the upper-left cornera to the lower-right cornerb.
The bold polygonal line in Fig. 1 represents an optimum
schedule of our example. In the schedule, there are 6
delays that are equally distributed between the two jobs.
Therefore, the makespan of the illustrated schedule is
m + 6/2 = 9 + 3 = 12.

Let S be a schedule of an instance with two jobs.
The number of vertical edges of the path representing
S is called thedelay of the first job according toS,
and the number of horizontal edges ofS is called the
delay of the second job according toS. Thedelay of S

is the maximum over these two delays. Obviously, the
makespan ofS is exactly the sum ofm and the delay of
S. For later use, we denote bysum-delay(S) the sum
of the delays of jobs according toS.

We outline the extension of this representation for an
arbitrary numberd of jobs. In this case we have ad-
dimensional gridGd

m that containsmd d-dimensional
grid cells. Again, the unit intervals of each axis are la-
beled by the tasks according to the sequence of ma-
chines of the corresponding job. Fixing a labeli of some
axis results in a(d − 1)-dimensional subgrid ofGd

m.
The intersection of two such different subgrids with

labelsi is a (d − 2)-dimensional subgrid ofmd−2 grid
hypercubes that are obstacles in the following sense. Let
d′ andd′′ be the subgrids resulting from a common label
i on two axesa′ anda′′. Any diagonal of a grid square
Q in the intersection ofd′ andd′′ whose projection in
the two dimensional subspace determined bya′ anda′′

is a diagonal corresponds to the execution of 2 tasks on
the same machine. Therefore, any such diagonal cannot
be part of a path determining the makespan and will be
called forbidden. All other diagonals are allowed w.r.t
this intersection. In particular, the main diagonal of such
a squareQ (that corresponds to the execution of all tasks
determined by the coordinates of this grid squareQ) is
forbidden, and so are the diagonals on the surface ofQ
that is defined bya′ anda′′. For instance, ifQ is part
of the intersection ofq (d − 1)-dimensional subgrids
determined by the same labeli onq different axes, then
to go from the “lowest” corner ofQ to the opposite
corner ofQ, requires at leastq time units: Since in this
caseq tasks request the same machine, this congestion
can be resolved byq subsequent steps only. Fig. 2 gives
an example of such an obstacle in the 3-dimensional
case.

Again, any optimum schedule corresponds to a short-
est path between the two extreme corners of the grid.
Therefore, for any constantd we get a polynomial-time
algorithm for input instances withd jobs. The notions
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J2

J3

J1σi

σi

σi

Fig. 2. An obstacle in the 3-dimensional case.

delay ofS andsum-delay(S) can be extended ford > 0
jobs in a straightforward way.

3. Some hard instances

The aim of this section is to construct some of the
hardest problem instances with two jobs, i.e., instances
where the optimum schedule has a maximum number
of delays. Letmakespan(I) denote the length of an
optimum schedule for the problem instanceI in what
follows.
Lemma 1 For everym =

(

k+1
2

)

, k a positive integer,
there exists an input instanceIR of two job unit–Jm

such that

makespan(IR) ≥ m +

√

m

2
− 1

2
.

Proof: Let Im
R = (J1, J2), where

J1 = w1, w2, . . . , wk , andJ2 = wR
1 , wR

2 , . . . , wR
k ,

with wi denoting a subsequence of machine indices in-
duced by the tasks, andwR

i denoting the reverse ofwi.
The subsequenceswi andwR

i , with i = 1, . . . , k, are
defined as

wi = [
(

i
2

)

+ 1,
(

i
2

)

+ 2, . . . ,
(

i
2

)

+i − 1,
(

i
2

)

+ i]

and hence

wR
i = [

(

i
2

)

+ i,
(

i
2

)

+ i − 1, . . . ,
(

i
2

)

+2,
(

i
2

)

+ 1].

Observe thatwi is a sequence ofi integers, fori =
1, . . . , k, and thatJ1 = 1, 2, . . . , m. An example for
m = 10 =

(

5
2

)

is

J1 = [1], [2, 3], [4, 5, 6], [7, 8, 9, 10],

and

J2 = [1], [3, 2], [6, 5, 4], [10, 9, 8, 7].

Clearly, if no delay occurs among the two jobs the
makespan would bem. Therefore, we show that every
schedule onIm

R contains at leastk delays, i.e., every
shortest path contains at leastk orthogonal grid edges.
Every of these orthogonal edges delays either of the
two jobs. Therefore, we have at least an overall delay of
k/2, i.e., the makespan must be at leastm + k/2. Note
that it is sufficient to prove thatk/2 ≥ √

m/
√

2 − 1/2
because it impliesmakespan(IR) ≥ m+

√

m/2−1/2.
We prove by induction oni + 1 that any schedule for
the jobs(w1, w2, . . . , wi) and (wR

1 , wR
2 , . . . , wR

i )
causes at leasti delays. To do so, we use the following
induction hypothesis:

Any schedule forI
(i+1

2 )
R , where one job is completed

and for the other job a prefix of length
(

i+1
2

)

− r, for
r ≤ i, is already processed (r is called therelative
delay), uses at leasti orthogonal grid edges (sum-delay
is at leasti), and it uses at leasti + 1 orthogonal grid
edges if the parities ofr and i differ (i.e.,r is odd and
i is even, orr is even andi is odd).

Obviously, this is true fori = 1. Let the hypothesis
be true fori′ = i − 1.

Now, consider a prefix of a scheduleS for I
(i+1

2 )
R , i >

1, and i is odd. The case thati is even is left to the
reader. Let us consider the last time unitt before the first
task ofwi or of wR

i will be executed. We distinguish
between two possibilities according to the relative delay
r of the executions of the prefixes up tot of J1 to J2

(i.e., the distance to the diagonal) in Graph(G(i+1

2 )).

(1) Let the relative delay be at leasti′, i.e., the distance
to the main diagonal isr ≥ i′. If r ≥ i′+1 = i, we
are done. Ifr = i′, then one can use the diagonal
edges only to executewi or wR

i , but because of the
same parity ofr and i′, the induction hypothesis
is satisfied. Since any change of the relative delay
during the work onwi or wR

i causes a new delay,
the hypothesis is true after processingwi or wR

i ,



Hromkovič, Steinhöfel, Widmayer and Mömke – Algorithmic Operations Research Vol.2 (2007) 1–14 5

too.
(2) Let the relative delayr be at mosti′. Then, fol-

lowing the induction hypothesis, the schedule con-
tains in this moment at leasti′ delays ifr is even,
and at leasti′ + 1 delays ifr is odd. If r is even,
then it is sufficient to observe that it is impossi-
ble to reach the border of the gridG(i+1

2 ) by us-

ing diagonal edges only. This is becausewi =
(

i
2

)

+1, . . . ,
(

i
2

)

+ i, wR
i =

(

i
2

)

+ i, . . . ,
(

i
2

)

+1.
Therefore, the execution of the taskσ(i

2)+j is an

obstacle for the following sequence of diagonal
edges running parallel to the main diagonal in the
distancei−2j+1 (corresponding to relative delay
i − 2j + 1) for j = 1, . . . , ⌊i/2⌋. Hence, at least
1 additional delay is necessary, and two additional
delays are necessary if the schedule finishes in the
same distancer from the diagonal.
If r is odd, and the scheduleS executeswi or wR

i

by using diagonal edges only, we havei “old” de-
lays (induction hypothesis) and we are done. Ob-
viously, if the distance to the diagonal changes, at
least one additional delay occurs.

Consider an input instanceIm
R

= (π1, π2), for m =

k2, k a positive integer, where

π1 = w1, w2, . . . , wk, uk−1, uk−2, . . . , u1,

π2 = wR
1 , wR

2 , . . . , wR
k , uR

k−1, u
R
k−2, . . . , u

R
1 ,

where thewi have the same meaning as before, andul

is a sequence ofl tasks forl = 1, . . . , k − 1, with
uR

l denoting the reverse oful . The example ofI9
R

for
π1 = 1, 2, . . . , m is given in Fig. 1. An extension of the
analysis presented in Lemma 1 leads to the following
result.
Lemma 2 For everym = k2, k a positive integer,

makespan(Im
R

) ≥ m +
√

m = m + k.

Proof: To prove the Lemma we show that every short-
est path between the two opposite corners of the grid
contains at least2 ·k orthogonal grid edges; this implies
that at least one of the two jobs is delayed by at least
k =

√
m time units and therefore, the makespan must

be at leastm +
√

m.
We use the induction of the proof of Lemma 1 in the

following way. The prefixesπ′
1 = w1, w2, . . . , wk−1

and π′
2 = wR

1 , wR
2 , . . . , wR

k−1 of the instanceIk2

R
de-

fine an instanceI ′
(k

′+1

2 )
R considered in Lemma 1, with

k′ = k − 1. The suffixesπ′′
1 = uk−1, uk−2, . . . , u1 and

π′′
2 = uR

k−1, u
R
k−2, . . . , u

R
1 define the same instance in

a symmetric way. We distinguish two cases.

(1) The relative delayr caused by the prefixI ′
(k

′+1

2 )
R

is r ≤ k′ and the parities ofk′ andr are the same.
Then we know from Lemma 1 that any schedule of
this prefix usesk′ orthogonal grid edges. However,
in the case that the parities ofk′ and r are the
same it is impossible to reach the border of the
grid G(k+1

2 ) by using diagonal edges only. This

is because ofwk and wR
k and hence, at least 1

additional delay is necessary, and two additional
delays are necessary if the schedule finishes in the
same distancer from the diagonal. After executing
the tasks ofwk andwR

k the schedule uses either
k′ + 1 = k orthogonal grid edges and changes the
parity of r or it usesk′ + 2 = k + 1 orthogonal
grid edges and does not change the parity ofr.

(2) The relative delayr caused by the prefixI ′
(k

′+1

2 )
R

is r ≤ k′ and the parities ofk′ andr differ. Then
we know from Lemma 1 that any schedule of this
prefix usesk′ + 1 orthogonal grid edges. In this
case, the schedule can execute the tasks ofwk

and wR
k by using diagonal grid edges only and

therefore, does not need to change the parity ofr.
Now, if the parities ofr andk′ are the same and the

schedule uses two additional delays to executewk and
wR

k then we havek′ delays for the prefix andk′ delays
for the suffix, i.e., the sum-delay equals2(k− 1)+2 =
2k. If the schedule uses only one additional delay to
executewk andwR

k then the parities ofr andk′ for the
suffix differ. Hence, we havek′ delays for the prefix and
k′ + 1 delays for the suffix, i.e., the sum-delay equals
k + k − 1 + 1 = 2k. The case that the parities ofr and
k′ differ for the prefix are symmetrical.

4. Upper bounds on the number of delays

In this section, we show that any input instance of
unit–Jm can be scheduled with2 · m1−ε delays for
d ≤ m1/2−ε, as compared with the lower bound on the
makespan. This improves on the upper boundO(m+d)
[5] for d = o(m).

First, we give the upper bound for two jobs. Note that
this upper bound meets the lower bound of Lemma 2.
Lemma 3 For every positive integerm, any two job
problem instanceI of unit–Jm satisfies

makespan(I) ≤ m + ⌈√m ⌉.
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Proof: For simplicity we present the proof for the case
m = k2 only. To do this we use the geometric repre-
sentation. In what follows fori = 0, 1, . . . ,

√
m, the

diagonalDi of the gridGm is the diagonal going from
the position(0, i) to the position(m− i, m); similarly,
diagonalD−i goes from(i, 0) to (m, m−i), see Fig. 3.

m

(0,0)

j

D-j

m

m

m

j
(m,m)

Fig. 3. The considered diagonals ofGm.

For eachi ∈ {−√
m, . . . , 0, . . . ,

√
m}, we asso-

ciate a scheduleS(Di) to diagonalDi. The schedule
S(Di) uses first|i| orthogonal grid edges to reach the
beginning of the diagonalDi, then it runs via this diag-
onal and avoids each obstacle on this diagonal by one
horizontal move and one vertical move. Finally, it uses
|i| grid edges on the border ofGm in order to reach
(m, m). Observe that the makespan of this schedule is
exactly

m + |i| + the number of obstacles atDi

because the length ofDi is m − |i| and the schedule
uses2 · |i| steps to reach and to leave this diagonal.
Therefore, the delay of the scheduleS(Di) is |i|+ the
number of obstacles atDi. The sum of all delays over
all 2

√
m + 1 considered schedulesDi is at most

m +

√
m

∑

i=−√
m

|i| = m + 2 ·
√

m
∑

i=1

i = m +
√

m · (√m + 1)

because the number of all obstacles in the wholeGm is
exactlym, the number of machines1 . Since the average
delay over all2 · √m + 1 considered schedules is

m +
√

m · (√m + 1)

2 · √m + 1
≤ √

m +
1

2
,

1 Therefore, in the worst case, all obstacles ofGm lie on the
2k + 1 diagonals, see Fig. 3.

there must exist a schedule that has delay at most
√

m.

Now, we extend Lemma 3 to all input instances, i.e.,
any number of jobs.
Theorem 4 For every positive integerm, and every
instanceI of unit–Jm with d = o(m1/2) jobs, the
length of any optimum schedule can be bounded from
above by

makespan(I) ≤ m + 2d
√

m = m + o(m).

Proof: The idea of the proof is to generalize the case
with d = 2 to any dimension. We can view thed-
dimensionalm×m×. . .×m grid Gm,d(I) as a subgrid
of an infinited-dimensional grid. We consider the fol-
lowing setD of diagonals that are parallel to the main
diagonal ofGm,d(I) that starts in the point(0, 0, . . . , 0)
and ends in(m, m, . . . , m): We take every diagonal
with a starting point(i1, i2, . . . , id), where there is ex-
actly onej ∈ {1, . . . , d} such thatij = 0, and0 > ib ≥
−r, for b ∈ {1, . . . , d} − {j} and somem ≥ r > 0.
Let D(i1, i2, . . . , id) denote the diagonal starting in the
point with the coordinates(i1, i2, . . . , id) that ends in
the point(i1 + m + a, i2 + m + a, . . . , id + m + a),
wherea = max{|ic| | c ∈ {1, . . . , d}} ≤ r. Every di-
agonalD(i1, i2, . . . , id) corresponds to a job schedule
where thejth job is postponed byij time units with re-
spect to jobs starting with the delay 0. If this schedule
reaches the final point(i1 +m+a, i2 +m+a, . . . , id +
m+ a) then all jobs were completely executed because
ij + m + a ≥ m for all j ∈ {1, . . . , d}.

Obviously, the number of all such diagonals is exactly

d · rd−1. (1)

Note, that one could consider also diagonals with
starting points containing several0 elements, but this
makes the calculation more complex and the achieved
gain is negligible.

Similarly, as in the 2-dimensional case we calculate
an upper bound on the total delay of alld · rd−1 sched-
ules. This bound can be obtained as the sum of an upper
bound on the sum of the lengths of all diagonals and of
an upper bound on the number of all delays occurring
on these diagonals.

The starting points of all diagonals inD lie on the
boundary of a grid that is mirrored onm diagonally
(note, that the coordinates of such a starting point are
all negative except for exactly one being equal to zero).
At the end at mostr extra diagonal steps are added to
reach the end point at(i1 +m+a, i2 +m+a, . . . , id +
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m+a). Therefore, the length of each described diagonal
is bounded from above bym + r. Because of (1) and
to make later calculations easier, the sum of the lengths
of all diagonals is at most

d · rd−1 · (m + 2r). (2)

Now, we count the number of possible delays. Thed
axes of the subgridGm,d(I) are labeled by thed jobs.
A labelσi on an axis determines a(d− 1)-dimensional
subgrid ofGm,d(I) of md−1 d-dimensional unit grid
cubes. An intersection of two such subgrids determined
by the same labelσi on two different axes is a(d− 2)-
dimensional subgrid ofmd−2 d-dimensional unit grid
cubes. Observe that the inner diagonal of any unit grid
cube induced by this intersection subgrid as well as the
corresponding diagonal on the surface of this unit grid
cube are forbidden, for any schedule. Therefore, any of
our diagonal schedules containing such a unit grid cube
will get a delay. Obviously, ifq (d − 1)-dimensional
subgrids labeled byσi meet in one unit grid cube, the
diagonal schedule containing such a grid cube must use
q − 1 additional steps to avoid this obstacle.

We calculate the total number of delays as the sum
of the number of delays caused by pairs of(d − 1)-
dimensional subgrids with the same label. We start with
the following technical fact:
Fact 5 The intersection of every pair of(d − 1)-
dimensional subgrids determined by the same taskσ
affects at most

(d − 1) · rd−2

diagonals ofD, each of them in exactly one unit grid
cube.

Proof: It is obvious that every(d−1)-dimensional sub-
grid determined by a taskσ intersects each of the di-
agonals ofD in exactly one unit grid cube1 . Thus, it
remains to bound the number of diagonals intersecting
the (d − 2)-dimensional subgrid considered.

The intersectionGσ of two subgrids labeled by the
same taskσ corresponds to a fixed relative delay be-
tween the execution of two jobs. If the taskσ is at the
ith position on theath-axis and at thejth position on
the bth axis,j ≤ i, then the relative delay between the
execution of thebth job and theath job is j − i for all
diagonals intersectingGσ.

1 This is the cube that corresponds to the execution of the
taskσ in the job determined by the considered axis.

Thus, we count the number of diagonals fromD with
the relative delayj − i between thebth and theath job.
SinceD is the union of allDp’s, whereDp contains all
diagonals with thepth element equal to0 andDu∩Dv =
∅ for u 6= v, u, v ∈ {1, 2, . . . , d}, we count the number
of such diagonals inDp for everyp separately.

Let p ∈ {1, 2, . . . , d}−{a, b}. The intersection ofDp

with Gσ meets all the diagonals withD(c1, c2, . . . , cd),
wherecp = 0 andcb = ca + j − i. One hasr possible
choices for every position from thed − 3 positions of
{1, 2, . . . , d} − {p, a, b}, and at mostr − (j − i) ≤ r
choices for theath axis. Thebth axis is unambiguously
determined by theath position. So, we have at most
rd−2 grid cubes in the intersection ofGσ andDp for p ∈
{1, 2, . . . , d} − {a, b}. Gσ meets exactly the diagonals
D(t1, t2, . . . , td) of Db, that hastb = 0 andta = i− j.
The number of such diagonals2 is exactlyrd−2. Gσ

does not intersect any diagonal fromDa because the
diagonalsD(s1, s2, . . . , sd) in Da havesa ≥ su for
everyu ∈ {1, 2, . . . , d}, i.e., theath job is executed as
the first one and so it cannot be delayed with respect to
any other job (including thebth job). Thus, all together
Gσ intersects at most

(d − 1) · rd−2

diagonals.
Since we havem tasks in each of thed jobs and

(

d
2

)

pairs of axes (jobs), the number of schedule delays on
all d · rd−1 diagonals is at most

m ·
(

d

2

)

· (d − 1) · rd−2. (3)

Therefore, the average number of delays per diagonal
is at most

m · d·(d−1)
2 · (d − 1) · rd−2

d · rd−1
≤ m · (d − 1)2

2 · r .

Since the length of every diagonal is bounded bym+
2r, the average makespan over all diagonal strategies in
D is bounded by

m + 2r +
m(d − 1)2

2r
≤ m + 2r +

md2

2r
. (4)

Choosingr = d
√

m/2 we obtain an average makespan
over ourdrd−1 diagonal strategies of at most

m + 2d
√

m.

2 with 2 fixed positions
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Thus, there must exist at least one diagonal strategy
with a makespan of at mostm + 2d

√
m = m + o(m)

for d = o(m1/2).

Corollary 6 For every positive integerm and every
instanceI of unit–Jm with d ≤ m1/2−ε jobs, with
0 < ε ≤ 1/2, the makespan of any optimal schedule
can be bounded from above by

makespan(I) ≤ m + 2m1−ε.

Proof: We choose

r = ⌊1

2
m1−ε⌋,

and insert it into (4). Then we have

m + 2⌊1

2
m1−ε⌋ +

m(d − 1)2

2⌊ 1
2m1−ε⌋ ≤ m + 2m1−ε.

Since the best known upper bound on the makespan
is 2(m+d) ≥ 2m, our upper bound is an improvement
for d = o(m).

5. A Randomized On-line Approximation Algo-
rithm

In this section we consider the on-line version of our
minimization problem which completely changes the
scenario. In the classical scenario, one knows the whole
input instance of an optimization problem and looks for
a good solution. In the on-line scenario, one has to deal
with the following tasks. One obtains only part of the
input, and is forced to process this part. After one has
solved it, one gets another part of the input that also
has to be immediately processed. The input may be ar-
bitrarily long. These kinds of tasks are called on-line
problems, and the algorithms solving on-line problems
are called on-line algorithms. The fundamental question
posed in this framework is the following: How good can
an on-line algorithm (that does not know the future) be
in comparison to an algorithm that knows the whole in-
put from the beginning? In our case, a good algorithm is
an algorithm which computes a short schedule. Hence,
one has a similar situation when dealing with optimiza-
tion problems. In order to get a reasonable measure of
the quality of on-line algorithms, we use the compet-
itive ratio which essentially consists of comparing the
costscostA(x) of solutions computed by an on-line al-
gorithm A with the cost of the corresponding optimal

solutionsOpt(x) for every valid inputx. The competi-
tive ratio of an on-line algorithm for minimization prob-
lems is defined as

compA(x) := costA(x)/Opt(x).

An algorithmA is calledδ-competitive, if the competi-
tive ratio is at mostδ for every valid inputx. In random-
ized algorithms, the competitive ratio may vary depend-
ing on the random decisions. Therefore, in this case we
need the expected competitive ratio.

Let Zx denote the random variable which measures
the cost of the solution calculated byA on inputx. We
define the expected competitive ratio ofA on x as

Exp−CompA(x) =
E[Zx]

Opt(x)
.

A randomized algorithmA is Exp[δ]-competitive, if
Exp−CompA(x) ≤ δ for a real numberδ and for every
valid inputx.

We propose a randomized on-line algorithmAlgo-
rithm OLRm, that is given below, forunit–Jm. The
number of jobsd and the number of machinesm are
known initially, with d = o(m1/2). When the algorithm
is executed, initially only the first task of each job is
known. Every time the processing of a task is finished,
the next task of the job is revealed. Thus at any time,
the on-line algorithm only knows the next task of each
job (and of course the completed tasks). Tasks occur in
the order determined by their job and in arbitrary order
across all jobs. The algorithm will choose uniformly at
random a schedule, i.e. a particular distribution of ini-
tial delays among jobs.

Algorithm OLRm

Input: The number of jobsd and the number of ma-
chinesm are known initially andd = o(m1/2). The
tasks of the jobs are presented one by one, within
each job in the order of their occurrence, and in ar-
bitrary order across the jobs.

Step 1: Choose uniformly a diagonalD at random
from D, i.e., generate the start coordinates of a diag-
onal fromD at random by following Theorem 1.

Step 2: Apply the schedule of the diagonalD ran-
domly determined by Step 1 by avoiding the obsta-
cles as they appear.

Theorem 7 The randomized on-line algorithmOLRm

for unit–Jm

(1) has an expected competitive ratio of at most1 +
2d/

√
m, that is,1 + o(1) if d = o(m1/2), and

(2) runs in linear time.
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Proof: First we prove (ii). We have an input of length
m · d. A numberd · ⌈log2 (d

√
m/2)⌉ of random bits is

sufficient to determine a diagonal and therefore, Step
1 can be executed in linear time. It is straightforward
to follow a given path for actual jobs (using diagonals
whenever possible) in linear time.

Now, we prove (i). Since the average makespan over
all schedules determined by the diagonals fromD is at
mostm+2d

√
m, and the optimum makespan is at least

m, the expected approximation ratio ofOLR is at most

m + 2d
√

m

m
= 1 +

2d√
m

Therefore, OLR is(1 + 2d/
√

m) competitive
w.r.t. optimum schedules. Note that no (randomized)
polynomial-time algorithm with an approximation ra-
tio tending to 1 ford = o(m1/2) with growingm has
been known before. Ford ≤ m1/2−ε our algorithm is
better than the2-approximation algorithm of Leighton
et al. [5]. Moreover,OLRm shows nicely the power
of randomization, because every deterministic on-line
algorithm forunit–Jm has its competitive ratio at least
Ω

(

d / log2 d
)

[5].

6. Randomization is more powerful than determin-
ism in the on-line case

In this section we compare the expected competitive
ratio of our randomized algorithm with the best compet-
itive ratio achievable with deterministic algorithms. In
order to analyze the competitive ratio of algorithms, it
is common to treat an on-line problem as a game played
by the algorithm designer against an adversary. The ad-
versary knows the on-line algorithm and, if the algo-
rithm is randomized, its probability distribution. Based
on that, the adversary creates an input instance for the
algorithm. Since in the deterministic case the knowl-
edge about the on-line algorithm enables the adversary
to determine the decisions of the deterministic on-line
algorithms step by step, one can view the game between
the algorithm designer and the adversary as follows.
The adversary constructs an input instance for a given
on-line algorithm. As on-line algorithms have to solve
parts of the solution in order to get more input, the input
instance is revealed piece by piece. Thus in the on-line
version ofunit–Jm, the adversary chooses the order of
the tasks in the jobs.

For every deterministic on-line algorithm we design
a successful adversary which causes the algorithm to

calculate a schedule with a large delay. We also show
that for two and three dimensions, it is not possible to
substantially improve our results.

In a grid Gm, we define theborder as the set of
vertices{(i, j) : i = m ∨ j = m} in Graph(Gm).
Further,diag denotes the number of diagonal steps out
of the steps already taken by an algorithm while it is
running. Analogously we will useort for the number
of orthogonal steps taken.

The strategy of the adversary is quite simple. He
wants to create an instance such that at least every sec-
ond step taken by the algorithm is not a diagonal one
(see Fig. 4).
Adversary 1 (Unit−Jm, d = 2)

Input : A deterministic on-line algorithmA for unit–
Jm and the number of machinesm.

Step 1: Place task 1 at the beginning of both jobs.
Step 2: While AlgorithmA takes orthogonal steps and
the border is not reached, place the available task
with lowest order into the corresponding job, i.e., in
the job in which a new task has to be revealed.

Step 3: If the last step ofA corresponds to a diagonal
step and the border is not reached then choose, for
both jobs, the minimum task (according to its name)
which is simultaneously available for both jobs (i.e.
force one job to wait), and jump to Step 2.

Step 4: If a border is reached, fill up the job which
is still not completely processed with the remaining
tasks in an arbitrary order and end.

Lemma 8 For every deterministic on-line algorithmA,
Adversary 1 constructs an input instanceIA such that
the schedule computed byA(IA) contains at leastm/3
delays.

Proof: First we show that Adversary 1 creates a valid
instance. Assume that there is a position(i, j) where the
on-line algorithm advances diagonally (see Fig. 4) and
at(i+1, j+1) it is not possible to place an obstacle (i.e.
to choose two identical tasks) and no border is reached.
For all i′, j′, tasks starting at(i+1, j′) or (i′, j+1) can
be excluded because of the monotonicity of advancing.
The only remaining possibility is that there is no task
left which is available on both axes (i.e. for both jobs).
But this cannot be because ifp is the next task in one
job andq the next one in the other andp > q, thenp is
available for both jobs. This is a contradiction.

In order to bound the number of steps, we show that
diag/(diag +ort) ≤ 1/2 holds. The first step is forced
to be orthogonal. The second is orthogonal or diagonal.
Therefore after one and after two steps the inequality
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Fig. 4. After a diagonal step, Adversary 1 always forces an
orthogonal step.

holds.
Let n the number of all diagonals before the actual

position such that the inequality holds. Then the next
step is blocked and an orthogonal step is forced. Let
l ≥ 0 be the number of steps until the next diagonal
is used. For the actual position and the next diagonal
we have1/(1 + l + 1) ≤ 1/2. If no further diagonals
follow, the ratio is0.

When (m, m) is reached, the number of horizontal
steps equals the number of vertical steps which implies
m = diag +ort/2. Therefore we getdiag ≤ 2/3m and
ort ≥ 2/3m. The number of steps increases whendiag
shrinks. Therefore at least43m steps are necessary.

On the other hand the following deterministic on-line
algorithm almost reaches this bound.

Algorithm Greedy-2d-Unit-Jm

Input: An instance ofunit–Jm with d = 3.
Step 1: Whenever possible take a diagonal step.
Step 2: If an advance on both axes is possible,

Step 2.1: If the actual position is not on the main
diagonal, then take an orthogonal step towards the
main diagonal.

Step 2.2: Else take a horizontal step.
Step 3: Otherwise, when one of the jobs was com-
pletely processed, take the only possible step. (This
is the case at the border.)

Lemma 9 For every input instanceI,

Fig. 5. Beside and under obstacles, diagonal steps are possible
(unless the border is reached).

compGreedy−2d−Unit−Jm
(I) ≤ 4

3 .

Proof: We analyze the relative number of steps before
a border is reached for an even number of steps. We
will show diag/(diag + ort) ≥ 1/2.

If at position(0, 0) there is no obstacle, the algorithm
starts with a diagonal step. An arbitrary second step
suffices to reach the ratio. If at position(0, 0) there is
an obstacle, the second step is a diagonal one, because
each row (and so the first row, too) may contain only
one obstacle.

Let n be an even number such that aftern steps the
ratio holds. The next step either is taken diagonally or
blocked (see Fig. 5). In the second case the second step
is a diagonal one. In both cases aftern+2 steps the ratio
still holds. In order to complete the proof, we also have
to show that the computed schedule is always close to
the middle diagonal. Therefore we show that for each
position (i, j) reached by the algorithm,| i − j |≤ 1
holds.

At position (0, 0) this is obviously the case. Let the
inequality hold for the firstn steps and let(i′, j′) be
the position reached aftern steps. If the next step is
a diagonal, the next position is(i + 1, j + 1) and |
i + 1 − j − 1 |=| i − j |. Otherwise the next step is an
orthogonal one. If| i− 1 |= 0, after an orthogonal step
the difference is one. If| i−1 |= 1 the next orthogonal
step is taken in the direction of the main diagonal. After
the step the difference is zero. At the border, only steps
to the main diagonal are possible.

Because of the limited distance to the middle diag-
onal, the schedule can only reach the border at one of
the positions in{(m−2, m−2), (m−1, m−2), (m−
1, m − 1), (m, m − 1), (m, m)}. In all cases, only the
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last step my be at the border. Apart from that, the ratio
from above always holds and thus at most one addi-
tional step is needed.

On the other hand, if makespan(I) = m, then ob-
viously also Greedy-2d-Unit-Jm(I) = m. In all other
cases,

compGreedy−2d−Unit−Jm
(I) ≤

4m
3 + 1

m + 1
≤ 4

3
.

Now we analyze the cased = 3. Let A be a deter-
ministic on-line algorithm forunit–Jm. We design the
following adversary forA:
Adversary 2 (Unit-Jm, d = 3)
Let τx, τy and τz be the sets of all tasks that are not
yet in the jobsx, y and z respectively. Placing a task
into a job also implies to delete it from the set. Further
let R be the set of jobs for which a new task has to be
revealed. The setR is updated with each step taken by
AlgorithmA which is part of the input.

Input : A deterministic on-line algorithmA for unit–
Jm and the number of machinesm.

Step 1: Place task 1 at the beginning of all three jobs.
Step 2: While |R| 6= 3 and τx ∪ τy ∪ τz 6= ∅, for
all a ∈ R place the minimum task (according to its
name) ofτa in job a.

Step 3: If |R| = 3, place taskmin
⋂

a∈R τa in all jobs
in R.

Step 4: If τx ∪ τy ∪ τz 6= ∅, jump to 2.
Informally, after an orthogonal step a 3 dimensional di-
agonal step can be accepted and directly after a 3 dimen-
sional diagonal step, an obstacle follows that blocks all
3 dimensions and thus only orthogonal steps are possi-
ble.

On every axis,m steps have to be performed. Here
we consider the sum of all steps taken on all axes. We
call the steps performed on an axis of the gridaxis-
steps to distinguish them from the steps taken by the
on-line algorithm. Thus every schedule has to perform
3 · m axis-steps.

We call the different types of obstaclesid-obstacle,
wherei is the number of jobs which have to process the
same task. Thus anid-obstacle in the grid means that
d−i+1 steps can be taken simultaneously. Analogously
we useid-step for steps ini dimensions at once. The
axes are numbered from 1 tod.
Lemma 10 For every deterministic on-line algorithm
A, Adversary 2 constructs an input instanceIA such
that the schedule computed byA(IA) contains at least
m/2 delays.

Proof: Step 1 and Step 2 only require that the sets of
available tasks are not empty. This property is given
because otherwise the corresponding axis is not inR.
It remains to show that it is always possible to place
three tasks in Step 3. We do not have to consider the
border because reaching the border implies|R| to be
smaller than 3. We show by induction over the number
of 3d-steps that after a 3d-step, the most advanced job
has been processed by all machines in{1, 2, . . . , j} for
somej ≤ m and no other machine. Thus either task
j + 1 is available for all jobs or the most advanced job
has reached the border.

From the first step to the first 3d-step, the tasks are
placed in increasing order. Thus the most advanced job
has been processed exactly on the firstj machines for
somej ≤ m and if j < m, taskj + 1 is available for
all jobs.

Let i be the number of 3d-steps already taken, and
let j′ be the number of tasks already processed from
the most advanced job directly after thei-th 3d-step.
After the (i + 1)-th 3d-step, at leastj′ + 1 tasks of
the most advanced job have been processed because a
3d-step advances on all 3 axes. All other tasks have
been added in increasing order. Thus, if the new most
advanced job is another one than before, all missing
tasks of{1, 2, . . . , j′} have been added to the job before
new tasks are placed. In any case, all new tasks are
placed in increasing order. Therefore, afteri + 1 3d-
steps, taskj′ + 1 is available for all jobs or the border
is reached.

It only remains to show that the average number of
axis-steps per step is at least 2. The first step ofA is
forced to be a 1d-step, and after all 3d-steps, a 1d-step
follows or the border is reached. Lets1, s2 ands3 be
the number of performed 1d-steps, 2d-steps and 3d-
steps respectively. Obviously,s3 ≤ s1 holds. Then the
average number of axis-steps per step is

s1 + 2 · s2 + 3 · s3

s1 + s2 + s3
≤ s1 + 2 · s2 + 3 · s1

s1 + s2 + s1
= 2.

Analogous to the previous case, we present the follow-
ing deterministic on-line algorithm:

Algorithm Greedy-3d-Unit-Jm

Input: An instance ofunit–Jm with d = 3.
Rule 1: If no obstacle is in the way, proceed on all
three axes.

Rule 2: Avoid 2d-obstacles by proceeding simultane-
ously on the non-affected axis and on the less ad-
vanced axis of the remaining two, or the first of the
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remaining axes, if both corresponding jobs have com-
pleted the same number of tasks.

Rule 3: Avoid 3d-obstacles by processing the least ad-
vanced jobs. If there are more than one least advanced
jobs, proceed with first of them.

Lemma 11 For every input instanceI,

compGreedy−3d−Unit−Jm
(I) ≤ 3

2
+

6

m
.

Proof: We will analyze the number of axis-steps per-
formed in one time unit. Then we will show that the
schedule keeps close to the main diagonal.

First we assume that no border is reached.
(a) After a 3d-obstacle (1d-step) a 2d-step is possible.
Let i be the axis of this 1d-step. Then in the next step,
on axisi a new machines has to process while on all
axesj ∈ {1, . . . , d} − {i} still the old machine has
to process.

(b) After a 2d-obstacle a 2d-step is possible, i.e., no
3d-obstacle is possible. Leti andj be the two axes
with the same machine. Further leti be the axis on
which A advances. In the next step, the machines
corresponding to these axes have to process different
tasks. Thus a 2d-step is possible again.

(c) Between two 3d-obstacles at least one 3d-step can
be performed. This follows from (a) and (b) because
the series of 2d-obstacles has to be interrupted.

Now we show that the distance between the most ad-
vanced job and the least advanced job is at most 2 steps.
First we show that for the case where only 2d-obstacles
are used. If 2d-steps are taken, each two consecutive
2d-obstacles cannot block the same two axes. Further
there are always two possible steps when a 2d-obstacle
is reached because one of the two blocked tasks can be
chosen. A simple induction shows the result: At posi-
tion (0,0,0), the distance to the main diagonal is zero.
By distinguishing all possible sequences of 2d-obstacles
(see Fig. 6, it follows that from any position(i, i, i) or
(i+1, i, i− 1), within 3 steps either(i+2, i+2, i+2)
or (i+3, i+2, i+1) is reachable. The distance between
the schedule and the main diagonal never exceeds two
steps.

If a 3d-obstacle is used, the direction of the first step
is free selectable. Therefore every second 3d-obstacle
gives the possibility to correct the distance to the main
diagonal again. At the border, the most advanced job is
finished. At most one additional step is caused by an
odd number of 3d-obstacles. Altogether at most 3 steps
are missing for each of the two remaining jobs to finish
which means at most 6 additional steps. The properties

(i, i, i) (i + 1, i, i− 1)

(i + 1, i, i + 1) (i + 1, i + 1, i) (i + 2, i, i)

(i + 2, i + 1, i + 1) (i + 1, i + 2, i + 1)

(i + 2, i + 2, i + 2)(i + 3, i + 2, i + 1)

xy

xyxy

xy

xy

xy

xz

xz

xz

xz

xz

xz

yzyz

yz

yzyz

yz

Fig. 6. From positions (i, i, i) and (i + 1, i, i − 1),
Alg. Greedy-3d-Unit-Jm reaches(i + 2, i + 2, i + 2) or
(i + 3, i + 2, i + 1) within 3 steps, if an arbitrary sequence
of 2d-obstacles has to be passed. The axes of the grid are
denominatedx, y and z. Note that two consecutive 2d-ob-
stacle cannot be caused by the same pair of axes. The edges
are labelled with those pairs of axes on which the schedule
cannot proceed simultaneously.

(a), (b) and (c) are applicable for all remaining steps.
Thus for each of these steps the average number of axis-
steps performed is at least two. Afterm + m/2 time
units, at least3m − 6 axis-steps are performed.

For d > 3 we can assign the first three axes as in the
cased = 3. Thus the lower bound on the makespan of
m + m/2 holds for every input instance withd ≥ 3.
Theorem 12 There is no deterministic on-line algo-
rithm for unit–Jm with a competitive ratio better than
4/3 for d = 2 or better than 1.5 ford > 2.

Proof: As we have seen above, for an increasingm,
OLRm results in a makespan tending tom, i.e., the ex-
pected competitive ratio of this on-line algorithm tends
to 1. This means that for everyε there is am such that
the competitive ratio of every deterministic on-line al-
gorithm forunit–Jm is at least4/3 − ε for d = 2 and
1.5 − ε for d ≥ 3. This directly implies the theorem.
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Thus randomization yields significantly better results
for on-lineunit–Jm than all deterministic approaches.

7. A deterministic approximation algorithm

As we already observed our grid representation pro-
vides anO(md) algorithm for input instances withm
machines andd jobs. The complexity of this algorithm
is too large even for constantd’s and it is not polyno-
mial for d growing with m. The aim of this section is
to present an efficient approximation algorithm at least
for smalld in comparison withm.

The idea is again to find a diagonal strategy, but in a
deterministic way by looking on the

(

d
2

)

2-dimensional
surfaces ofGm,d(I) only. Remember that fixing a di-
agonal strategy is nothing else than fixing the relative
delays between all pairs of jobs.

Algorithm SURFACE(I)
Input: I = (J1, J2, . . . , Jd), where Ji is the ith

job, i.e., a permutation of(1, 2, . . . , m), and d ≤
1/2 log2 m.

Step 1: If d = 2 take the best diagonal strategy from
the 2

√
m + 1 diagonal strategies with the relative

delay betweenJ1 and J2 bounded by
√

m. If d >
2, then apply SURFACE(J1, J2, . . . , Jd−1) in order
to find a diagonal strategyD for (J1, J2, . . . , Jd−1),
that contains at most2d−1√m delays and for every
j ∈ 2, . . . , d − 1 the relative delay betweenJ1 and
Jj is at most

√
m. (Observe, thatD fixes the delay

between any two of the firstd − 1 jobs.)
Step 2: Fix consecutively the relative delays between
Jd and the jobsJ1, J2, J3, . . . , Jd−1 in the following
way:

(2.1) SetS1 as the set of the best3 ⌊√m⌋ diago-
nal strategies from the2 · ⌊√m⌋ + 1 diagonal
strategies for the input instance(J1, Jd). (S1

can be viewed as a set of relative delays from
{⌊−√

m⌋, . . . , ⌊√m⌋} betweenJ1 and Jd and
together withD it determines⌊√m⌋ diagonal
strategies for(J1, J2, . . . , Jd)).

(2.2) SetS2 as the set of the best⌊√m⌋/2 diagonal
strategies from the diagonal strategies ofS1 ac-
cording to the input instance(J2, Jd).
...

(2.i) SetSi as the set of the best⌊√m⌋/2i−1 diagonal
strategies from the diagonal strategies ofSi−1

3 with respect to the number of obstacles

according to the input instance(Ji, Jd).
(2.d-1) Choose the best diagonal strategyD from Si−1

according to(Jd−1, Jd).
Output: The diagonal strategy determined byD
andD.

Theorem 13 For every input instanceI = (J1, J2, . . . ,
Jd) of unit–Jm with d ≤ 2 log2 m, the algorithm
SURFACE(I)

(i) runs in timeO(d2m2), and

(ii) has an approximation ratio of at most1 + 2d

√
m

.

Proof: SURFACE(I) does nothing else than looking on
all

(

d
2

)

2-dimensional surfaces ofGm,d(I) in order to
choose a set of convenient delays with respect to every
pair of jobs. The size of each surface ism2 and the
choice of a group of the best diagonals from a given
set of diagonals can be done inO(m2) time. Thus, the
overall time is inO(d2m2).

To prove (ii) we first prove
(ii)

′ The diagonal strategy computed by the algorithm
SURFACE(I) contains at most2d⌈√m ⌉ delays.

We prove (ii)′ by induction on d. For d = 2
Lemma 3 guarantees at most⌈√m ⌉ delays. Let(ii)′

be true ford − 1, i.e., the strategyD computed for
(J1, J2, . . . , Jd−1) in the first step of SURFACE(I)
contains at most2d−1 · ⌈√m ⌉ delays between the
first d − 1 jobs. In Step (2.1) we look on the surface
determined by(J1, Jd). Following Lemma 3 the av-
erage number per diagonal of obstacles on the main
2 · ⌊√m ⌋ + 1 diagonals of this surface is at most

m

2 · ⌊√m ⌋ + 1
≤ ⌈√m ⌉

2
.

So, there must exist a setS1 of ⌊√m ⌋ diagonals such
that every diagonal ofS1 has at most⌈√m ⌉ obsta-
cles, i.e., at most twice the average. Observe, that
each of these diagonals fromS together withD de-
termines a diagonal strategy for the whole instance
I = (J1, J2, . . . , Jd), whereJ1 and Jd have at most
⌈√m ⌉ delays. Thus, we have| S1 |= ⌊√m ⌋ can-
didates for the output. In Step (2.2) we choose the
best ⌊√m ⌋/2 from these candidates with respect to
the obstacles forJ2 and Jd. Since these⌊√m ⌋ can-
didates can contain together at mostm obstacles, the
average number of obstacles is⌈√m ⌉, and so there
exist ⌊√m ⌋/2 diagonals each with at most2 · ⌈√m ⌉
obstacles. In general, in Step (2.i) for2 ≤ i ≤ d − 2
we choose from the remaining⌊√m ⌋/2i−2 candi-
dates the best⌊√m ⌋/2i−1 candidates with respect to
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the number of obstacles on the surface determined by
Ji and Jd. Each of the candidates ofSi has at most
2i−1 ·⌈√m ⌉ obstacles betweenJi andJd. The last Step
(2.d-1) corresponds to the choice of the best diagonal
D′ (with respect to the relation betweenJd−1 andJd)
from ⌊√m ⌋/2d−3 candidates. The number of obstacles
betweenJd−1 andJd on D′ is bounded by the average

m

⌊√m ⌋/2d−3
= 2d−3 · ⌈√m ⌉.

Let D be the resulting strategy forI. Thus, the overall
number of obstacles betweenJd and all other jobs inD
is at most
d−2
∑

i=1

2i−1 · ⌈√m ⌉ = (2d−2 − 1) · ⌈√m ⌉

< (2d−1 − 2) · ⌈√m ⌉.
By the induction hypothesis the number of obstacles

between the firstd − 1 jobs is at most2d−1 · ⌈√m ⌉,
and therefore, the overall number of obstacles on all

(

d
2

)

2-dimensional surfaces is at most

(2d − 2) · ⌈√m ⌉.

Obviously, these obstacles together cause at most
(2d−2)⌈√m ⌉ delays when following the diagonal strat-
egyD. The length ofD is at mostm + 2 · ⌊√m ⌋ be-
causeD was constructed in such a way that no relative
delay betweenJ1 and any other job would be greater
than ⌊√m ⌋ (i.e., the relative delay between any pair
of jobs is at most2 · ⌊√m ⌋). Thus, the schedule that
follows D has a makespan of at most

m + 2 · ⌊√m ⌋+ (2d − 2) · ⌈√m ⌉ ≤ m + 2d · ⌈√m ⌉.

Since the optimum makespan is at leastm, the ap-
proximation ratio is at most

1 +
2d

⌊√m ⌋ .

The main point is that SURFACE works in quadratic
time for constantd and can provide a good approxima-
tion ratio in that case. Observe, that the approximation
ratio of SURFACE(I) tends to 1 with growingm for
d = o(log2 m).

8. Conclusions

For the job shop schedule problemunit–Jm we de-
rived an upper bound on the makespan of optimum

Received 8 February 2006; revised 25 July 2006; accepted 28
August 2006

schedules that improves on the result given in [5] for
d = o(m1/2). We presented a competitive w.r.t. the
makespan of an optimum solution, randomized on-line
approximation algorithm that solvesunit–Jm in lin-
ear time with an expected approximation ratio of1 +
2d/

√
m which amounts to1+o(1) for d = o(m1/2). For

d = o(m1/2) the algorithm is the best approximation
algorithm forunit–Jm. We showed that every determin-
istic on-line algorithm forunit–Jm yields significantly
worse results than our randomized algorithm. Ifm is ar-
bitrarily large, the competitive ratio w.r.t the makespan
is at least 1.5 for every deterministic on-line algorithm,
if d ≥ 3. Our deterministic approximation algorithm is
efficient at least for smalld’s in comparison withm. Its
run-time isO(d2m2), and it has an approximation ra-
tio of at most1+ 2d

⌊√m ⌋ which tends to 1 with growing

m for d = o(log2 m). For the special case ofunit–Jm

with two jobs, which is solvable in linear time, we have
shown that there exist input instances such that every
schedule has a makespan of at leastm +

√
m. There-

with, we proved that our upper bound on the makespan
for m + ⌈√m⌉, for d = 2 cannot be improved.
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