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FINITE-SAMPLE SIGN-BASED INFERENCE IN 
LINEAR AND NONLINEAR REGRESSION MODELS 

WITH APPLICATIONS IN FINANCE*

Abderrahim TAAMOUTI 
Durham University Business School 
abderrahim.taamouti@durham.ac.uk

abstract–We review several exact sign-based tests that have been recently proposed for 
testing orthogonality between random variables in the context of linear and nonlinear regression 
models. The sign tests are very useful when the data at the hands contain few observations, 
are robust against heteroskedasticity of unknown form, and can be used in the presence of 
non-Gaussian errors. These tests are also flexible since they do not require the existence of 
moments for the dependent variable and there is no need to specify the nature of the feedback 
between the dependent variable and the current and future values of the independent variable. 
Finally, we discuss several applications where the sign-based tests can be used to test for 
multi-horizon predictability of stock returns and for the market efficiency.

IntroductIon

In this chapter we survey several recent developments on sign-based inference. 
The literature on sign tests is not new and several books and monographs have be 
written on these tests in the context of i.i.d. data; see e.g. Boldin et al. (1997). 
However, the focus here is on reviewing new sign-based tests that have been 
proposed to test orthogonality between random variables in the context of linear 
and nonlinear regression models and in the presence of both independent and 
dependent data. We also illustrate how these tests can be used to overcome well 
known problems encountered when testing important financial theories.

As we know, regression errors in economic and financial data frequently exhibit 
non-normal distributions and heteroskedasticity. In the presence of several types 
of heteroskedasticity, usual “robust” tests–such as tests based on White (1980)-type 
variance corrections–remain plagued by poor size control and/or low power. In 
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addition, the available exact parametric tests typically assume Gaussian disturb-
ances. The latter assumption is often unrealistic and, in the presence of heavy tails 
and asymmetric distributions, the associated tests may easily not perform well in 
terms of size control or power. Moreover, statistical procedures for inference on 
parameters of nonlinear models are typically based on asymptotic approximations, 
which may easily be not reliable in finite samples; see Dufour (2003).

In the last two decades a number of new sign-based test procedures have been 
developed in the literature to deal with the above problems. In the presence of only 
one explanatory variable, Campbell and Dufour (1991, 1995, 1997) and Luger 
(2003) propose nonparametric analogues of the t-test, based on sign and signed 
rank statistics, which are applicable when regressors involve feedback of the type 
considered by Mankiw and Shapiro (1986). These tests are exact even when the 
disturbances are asymmetric, non-normal, and heteroskedastic. In the presence of 
non-stochastic regressors, Dufour and Taamouti (2010) propose simple point-optimal 
sign-based tests in linear and nonlinear multivariate regressions, which are valid 
under non-normality and heteroskedascticity of unknown form, provided the errors 
have median zero conditional on the explanatory variables. The proposed tests are 
exact, distribution-free, and may be inverted to build confidence regions for the 
vector of unknown parameters. Furthermore, an important feature of these tests 
comes from the fact that they trace out the power envelope, i.e. the maximum 
achievable power for a given testing problem. The power envelope provides an 
obvious benchmark against which test procedures can be evaluated. Coudin and 
Dufour (2009) extend the work by Boldin et al. (1997) to account for serial depend-
ence and discrete distributions. In particular, they develop finite-sample and dis-
tribution-free sign-based tests and confidence sets for the parameters of a linear 
multivariate regression model, where no parametric assumption is imposed on the 
noise distribution. In addition to non-normality and heteroscedasticity, their set-up 
allows for nonlinear serial dependence of unknown forms. To build their sign tests, 
they first consider a “mediangale” structure under which the signs of mediangale 
sequences follow a nuisance-parameter-free distribution despite the presence of 
non-linear dependence and heterogeneity of unknown form.

The present chapter faithfully follows the text of the abovementioned papers 
to survey the exact sign-based tests that have been recently proposed for testing 
orthogonality between random variables. These tests are very useful when the data 
at the hands contain few observations, and they are very flexible since they do not 
require the existence of moments for the dependent variable and there is no need 
to specify the nature of the feedback between the dependent variable and the current 
and future values of the independent variable.

The above statistical procedures are motivated in at least two ways. First, it is 
well known that hypotheses on means (moments) are not testable in nonparametric 
setups even under the apparently restrictive assumption that observation are 
independent and identically distributed (i.i.d.): if a test has level α for testing the 
null hypothesis that the mean of i.i.d. observations has a given value, then its power 
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cannot be larger than the level α under any alternative of the mean; see Bahadur 
and Savage (1956). Similar results hold for the coefficients of regression models; 
see Dufour, Jouneau, and Torrès (2008). In other words, moments are not empirically 
meaningful in many common nonparametric models. This provides a strong reason 
for focusing on quantiles (such as median) in nonparametric models — instead of 
moments — because quantiles are not affected by such problems of nontestability. 
Second, in the presence of general heteroskedasticity, Lehmann and Stein (1949) 
and Pratt and Gibbons (1981) show that sign methods are the only possible way of 
producing valid inference in finite samples; see also Dufour and Hallin (1991) and 
Dufour (2003). If a test has level α for testing the null hypothesis that observations 
are independent each with a distribution symmetric about zero, then its level must 
be equal to α conditional on the absolute values of the observations: in other words, 
it must be a sign test. For a more detailed discussion of statistical inference impossi-
bilities in nonparametric models, see Dufour and Hallin (1991) and Dufour (2003).

Finally, we discuss several applications where sign-based tests are used to test 
the multi-horizon predictability of stock returns (Liu and Maynard, 2007) and for 
the market efficiency (Gungor and Luger, 2009).

The plan of the chapter is as follows. In the first section, we present a general 
framework for reviewing different sign-based tests. In Section 2, we review many 
tests that have been proposed in the context of simple regression model. In Section 
3, we survey several sign-based tests for testing parameters in multivariate linear 
and nonlinear regressions and in the presence of both independent and dependent 
data. In Section 4, we discuss two applications where sign-based tests are used to 
test the multi-horizon predictability of stock returns and market efficiency. We 
conclude in the laast section.

1. general frameWork

In this section, we describe a general framework for reviewing several exact 
sign-based tests that have been recently proposed for testing orthogonality between 
random variables. These tests are motived in the context of the following 
regression

Yt =µ+ f Xt;β( )+εt ,  (1)

where assumptions on the error term e
t
, on the functional form f(.), on the randomness 

and dimension of X, and on the presence or absence of the intercept μ lead to different 
tests. In particular, we discuss several finite-sample tests of independence between 
Y and X which are exact under weak assumptions concerning the distribution of Y 
and the relationship between Y and X. These tests can also differ depending on 
whether or not the concept of optimality (power) is under consideration.

For the first group of exact sign-based tests that we review below, the functional 
form f(.) is assumed to be linear and X is stochastic. However, both Y and X cannot 
be multivariate and we simply assume that Y has median zero. No additional 
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assumption other than the independence of Y
t
 with respect to the past (hereafter I

t–1
) 

governs the relationship between Y and X. In other words, this first group of sign-
based tests are developed within the framework of the following general specification 
involving the random variables Y

1
,…, Y

n
, X

0
,…, X

n–1
, and the corresponding infor-

mation vectors I
t
 = (X

0
, X

1
,…, X

t
, Y

1
,…,Y

t
)', where t = 0,...,n−1 , with the convention 

It = (X0 ) : 

Y
t
 is independent of I

t–1
, for each t = 1,…,n, (2)

P[Yt > 0] = P[Yt < 0],for t = 1,...,n.  (3)

Assumption (2) indicates that Y
t
 is independent of the past values of Y

t
 and  X

t
, while 

assumption (3) states that Y
1
,…, Y

n
 have median zero. As discussed in Campbell and 

Dufour (1995), these assumptions leave open the possibly of feedback from Y
t
 to 

current and future values of the X -variable without specifying the form of feedback. 
Furthermore, the variables Y and X may have discrete distributions, which includes 
the possibility of non-zero probability mass at zero; as well, the variables Y need not 
be Gaussian nor identically distributed. In what follows, the additional assumption 
that Y

1
,…, Y

n
 have distributions symmetric about zero (m

0
) is also considered: 

Y
1
,…, Y

n
 have continuous distributions symmetric about zero (m

0
). (4)

For the second group of sign-based tests that we discuss below, X can be 
multivariate. Furthermore, two sets of assumptions are separately considered 
depending on whether or not Y is assumed to be independent. When the process 
of Y is supposed to be independent, then it is assumed that

Y
1
,…, Y

n
 are independent conditional on X (5)

and the error term in the regression (1) satisfies: 

P[εt > 0 | X] = P[εt < 0 | X] =
1

2
,t = 1,…,n,

 
(6)

where X = [X1,…,Xn ]
'
'
 
is an n x k matrix. Note that Assumption (6) entails that the 

error term e
t
 has no mass at zero, i.e. P[εt = 0 | X] = 0  for all t. Moreover, it is clear 

that assumptions (5) and (6) are more restrictive than assumptions (2) and (3) and 
(4). The former will help to build optimal sign-based tests which are valid for both 
X univariate and multivariate. Optimality here is in the Neyman-Pearson sense, thus 
these tests maximize the power function under the level constraint; see for example 
Lehmann (1959, page 65). Finally, when the process of Y is supposed to be dependent, 
it is mainly assumed that the the error term e

t
  is a mediangale process, where the 

latter term is defined in Coudin and Dufour (2009); see also Section 3.2.

2. sIgn-based tests for sImple regressIons

In the presence of only one explanatory variable, Campbell and Dufour (1991, 
1995, 1997) and Luger (2003) propose nonparametric analogues of the t-test, based 
on sign and signed rank statistics, which are applicable when regressors involve 
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feedback of the type considered by Mankiw and Shapiro (1986). These tests are 
exact even when the disturbances are asymmetric, non-normal, and heteroskedastic. 
Campbell and Dufour (1991, 1995) have proposed exact sign and signed rank 
statistics in the absence of a nuisance parameter (drift parameter μ), and Campbell 
and Dufour (1997) and Luger (2003) build sign and signed rank statistics in the 
presence of a nuisance parameter (drift parameter μ).

2.1 Sign-based Tests without Nuisance Parameters

Campbell and Dufour (1991) have introduced non-parametric analogues of the 
t-test, based on sign statistics and Wilcoxon signed-rank statistics, that are applicable 
in the context of an important variant of the Mankiw and Shapiro (1986) model. 
Using Monte Carlo techniques, the latter found that the standard testing procedure, 
such as t-test, that is used to assess the rationality of expectations may be consider-
ably greater than its nominal level in a fairly simple model and in the presence of 
large samples. Campbell and Dufour (1995) have considerably generalized the 
results in Campbell and Dufour (1991), where various nonparametric statistics are 
introduced to deal with a variant of the Mankiw and Shapiro (1986) model. In 
particular, the nature of the allowed feedback is considerably more general in 
Campbell and Dufour (1995) and exact distributional results are established. For 
these reasons, in what follows we focus on only reviewing the results in Campbell 
and Dufour (1995).

Campbell and Dufour (1995) consider the following linear simple regression 
model: 

Yt = βXt−1 +εt ,  (7)

where the drift parameter is equal to zero, X is a scalar independent covariate, and 
the error term e

t
 has the same properties as Y

t
 in (2) and (3) and (4). Suppose we 

wish to test the null hypothesis: 

H0 :β = β0.  (8)

To test the null H
0
 in (8), Campbell and Dufour (1995) propose to use nonpara-

metric analogues of Student’s t-statistics based on sign (rank) of the observations, 
which is derived from

T = β̂ −β0( ) / σ̂2 Xt−1
2

t=1

n

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−1/2

= Vt

t=1

n

∑  (9)

where

 

β̂ = Yt

t=1

n

∑ Xt−1 / t=1
n Xt−1

2

t=1

n

∑β̂ = Yt

t=1

n

∑ Xt−1 / t=1
n Xt−1

2

t=1

n

∑/ ,

 

σ̂2 =
t=1

n

∑ Yt −β̂Xt−1( )
2

/ n−1( ) ,
 

and

Vt = Yt −β0Xt−1( )Xt−1 / σ̂2 Xt−1
2

t=1

n

∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1/2

.
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The nonparametric test procedures of Campbell and Dufour (1995) abstract 
from the specific values of V

t
 to consider simply its sign and possibly the rank of 

its absolute value among V1 ,..., Vn .  Those procedures consider the products 
Zt = Yt −β0Xt−1( )Xt−1  

as the basic building block in the definition of various 
nonparametric statistics. Thus, a nonparametric analogue of the t-statistic in (9) is 
the sign statistic given by: 

Sg = u
t=1

n

∑ Yt −β0Xt−1( )gt−1( ) ,  (10)

where

{u(z) = 
1, if z ≥ 0

0, if z < 0,
 (11)

with gt = gt (It ), t = 0,...,n−1, is a sequence of measurable functions of the infor-
mation vector I

t
. The latter functions allow one to consider various transformations 

of the data, provided g
t
 depends only on past and current values of X

t
 and  Y

t
 (τ ≤ t). 

A special case of (10) is the following test statistic

S0 = u
t=1

n

∑ Yt −β0Xt−1( )Xt−1( ).

Without loss of generality, in what follows we focus on testing H0 :β = 0,  which 
corresponds to testing orthogonality between Y and X. The following proposition 
establishes the exact distribution of S

g
 when Y

t
 and g

t
 are continuous variables (have 

no probability mass at zero).

Proposition 1 (Campbell and Dufour, 1995) Let Y = (Y1,...,Yn )' '
 
and 

X = X0 ,...,Xn−1( )' ' be two nx1 random vectors which satisfy assumptions (2) and 

(3). Suppose further that P Yt = 0[ ] = 0,
 
for t = 1,...,n  and let gt = gt (It ),  

t = 0,...,n−1,  be a sequence of measurable functions of I
t
 such that P gt = 0[ ] = 0,  

for t = 0,...,n−1 . Then the statistic S
g
 defined by (10) follows a Bi(n,0.5)  distri-

bution, i.e.

P Sg = x⎡⎣ ⎤⎦= Cn
x 1 / 2( )n for x = 0,1,...,n,  (12)

where Cn
x = n! / x!(n− x)![ ].

Assumption P Yt = 0[ ] = P gt = 0[ ] = 0
 
in Proposition 1 means that Y

t
 and g

t
  

have no mass at zero, which holds when these variables have continuous distribu-
tions. In addition, the conditions of Proposition 1 are quite flexible since there are 
no assumptions concerning the existence of moments of  Y

t
; heteroskedasticity of 

unknown form is permitted; the nature of the feedback between Y
t
 and current and 

future values of Xt+s  
(s ≥ 0) is not specified.

Campbell and Dufour (1995) consider other test statistics that are based on 
sign and ranks under the further assumption in (4), with m

0
 = 0. In particular, they 

consider the following signed rank statistics
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Wg = u
t=1

n

∑ (Ytgt−1)R1t
+ ,  (13)

SRg = u
t=1

n

∑ (Ytgt−1)R2t
+ ,  (14)

where R1t
+

 
is the rank of Ytgt−1 , i.e. R1t

+ = u
j=1

n

∑ Ytgt−1 − Yjgj−1( )  
the rank of Ytgt−1  

when Y1g0 ,..., Yngn−1  are put in ascending order, while R2t
+  denotes the rank of 

Yt  among Y1 ,..., Yn .
 
Special cases of signed rank statistics in (13) and (14) are 

obtained by taking gt = Xt : 

W0 = u
t=1

n

∑ (Yt Xt−1)R1t
+ , SR0 = u

t=1

n

∑ (Yt Xt−1)R2t
+ ,

computed by weighting the sign of each positive product Yt Xt−1  
by the rank of its 

absolute value. As pointed out by Campbell and Dufour (1995), the possibility of 
feedback makes it impossible to establish in general that W

0
 and W

g
 are distributed  

as a Wilcoxon signed rank variate, i.e., as W = t
t=1

n

∑ Bt  where B1,...,Bn  are inde-

pendent random variables such that P Bt = 0[ ] = P Bt = 1[ ] = 0.5,  for t = 1,...,n . 

However, in the absence of feedback, Campbell and Dufour (1995) derive the 

following result.

Proposition 2 (Campbell and Dufour, 1995) Let Y = (Y1,...,Yn )''
 
and 

X = X0 ,...,Xn−1( )'' be independent n x 1 random vectors such that (2) and (4), for 

m
0
 = 0 hold. Let g

t
 = g

t
 (X), t = 0,...,n−1, be a sequence of measurable functions 

of the vector X such that P gt = 0[ ] = 0 . Then the statistic W
g
 defined in (13) is 

distributed as a Wilcoxon signed rank variate, i.e., as W = t
t=1

n

∑ Bt

 

where B1,...,Bn

are independent uniform Bernoulli variables on 0,1{ }.

The distribution of W in Proposition (2) has been extensively tabulated by 
Wilcoxon, Katti and Wilcox (1970) among others, and the normal approximation 
with E W( ) = n(n+1) / 4  and Var(W ) = n(n+1)(2n+1) / 24 works well even for 
small values of n.

The following proposition establishes exact distribution for the statistic SR
g
 in 

(14) without the additional assumption that the vectors Y and X are independent as 
in Proposition 2.

Proposition 3 (Campbell and Dufour, 1995) Let Y = (Y1,...,Yn )'' and 

X = X0 ,...,Xn−1( )'' be two n x 1 random vectors such that (2) and (4), with m
0
 = 0, 

hold. Let gt = gt (It ) , t = 0,...,n−1,  be a sequence of measurable functions of 
  

I
t
 = (X

0
, X

1
,…, X

t
, Y

1
,…, Y

t
)' such that P gt = 0[ ] = 0

 
for t = 0,...,n−1,  let 
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Y = Y1 ,..., Yn( )' ,
 
', and define the sign variables st = u Ytgt−1( )  

for t = 1,...,n.  Then 

the following two properties hold: 

(a) the signs s1,...,sn  are mutually independent and, provided Yt ≠ 0  for 
t = 1,..,n ,

P st = 0 Y⎡⎣ ⎤⎦= P st = 1 Y⎡⎣ ⎤⎦= 0.5;fort = 1,..,n;
 

P st = 0 Y⎡⎣ ⎤⎦= P st = 1 Y⎡⎣ ⎤⎦= 0.5;fort = 1,..,n;

(b) the statistic SR
g
 defined by (14) follows the same distribution as the Wilcoxon 

signed rank variate W = t
t=1

n

∑ Bt  where B1,...,Bn  are independent uniform Bernoulli 

variables on 0,1{ }.

Finally, Campbell and Dufour (1995) extend the above results by relaxing 
totally or partially the assumptions that Y

t
 and X

t
 (or more generally g

t
) have no 

probability mass at zero; see Campbell and Dufour (1995: Proposition 4). Their 
Proposition 4-(b) shows that, provided g0 ,...,gn−1  have no probability mass at zero, 
tests based on S

g
 in (10) can be performed conditionally on the non-zero Yt

's,  
i.e. 

after dropping the zero Ytgt−1  
products. For the more general case where g0 ,...,gn−1  

may have a mass at zero, the distribution of S
g
 appears difficult to determine. 

However, their Proposition 4-(a) shows that a simple alternative consists in replacing  

S
g
 by the closely related statistic Sg = u

t=1

n

∑ Ytgt−1( ) ,
 
where gt = gt +δ gt( ) , with 

δ x( ) = 1  if x = 0 , and δ x( ) = 0  if x ≠ 0,  to which the result of their Proposition 
4-(b) applies. Similarly, under assumption (4) and for m

0
 = 0, they show that one 

can use the statistic SRg = u
t=1

n

∑ Ytgt−1( )R2t
+

  

instead of SRg  in (14); by their Proposition 

4-(c), SRg follows the usual Wilcoxon distribution.

2.2 Sign-based Tests with Nuisance Parameters

Campbell and Dufour (1997) extend the finite-sample nonparametric tests of 
Campbell and Dufour (1995) to allow for an unknown drift parameter. Their tests 
remain exact in the presence of general forms of feedback, non-normality and 
heteroskedasticity. They motivate their tests in the context of the following simple 
linear regression model with non-zero intercept: 

Yt =µ+βXt−1 +εt .  (15)

They consider similar assumptions to those in Campbell and Dufour (1995), 
with the difference that the variable Y

t
 has now median m

0
 instead of zero. Formally, 

they assume that Y1,...,Yn  and X0 ,...,Xn−1  
have continuous distributions such that: 

Y
t
 is independent of I

t–1
, for each t = 1,…,n; (16)

P Yt > m0[ ] = P Yt < m0[ ] ,fort = 1,...,n.
 
t = 1,…n; (17)
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Assumptions (16) and (17) leave open the possibility of feedback from Y
t
 to current 

and future values of the X -variable, without specifying the form of feedback or any 
other property of the X -process. In addition, the variables Y

t
 need not be normal nor 

identically distributed. They also consider the following additional assumption: 

Y
1
,…,Y

n
 have continuous distributions symmetric about m

0
. (18)

The difference with Campbell and Dufour (1995) is the presence of an unknown 
median parameter m

0
 which will complicate the construction of nonparametric 

tests. However, to obtain methods applicable for unknown m
0
 Campbell and Dufour 

(1997) first consider the case where the nuisance parameter m
0
 is known. In this 

case, the techniques of Campbell and Dufour (1995) can be applied to build exact 
nonparametric tests. Campbell and Dufour (1997) consider the sign statistic

Sg m( ) = u
t=1

n

∑ Yt −m( )gt−1
⎡⎣ ⎤⎦,  (19)

where the functions u .[ ]  and gt−1 .( )  are defined in Section 2.1. Under the further 
assumption in (18), they also consider an aligned signed rank statistics with general 
form: 

SRg (m) = u
t=1

n

∑ Yt −m( )gt−1
⎡⎣ ⎤⎦Rt

+(m),  (20)

where Rt
+(m)

 
is the rank of Yt −m ,  i.e. Rt

+(m) = u
j=1

n

∑ Yt −m − Yj −m( )  
the 

rank of Yt −m
 
when Y1 −m ,..., Yn −m

 
are put in ascending order. The following 

proposition establishes the finite-sample distributions of S
g
(m) in (19) and SR

g
(m) 

in (20) when m = m
0
 is assumed to be a known parameter.

Proposition 4 (Campbell and Dufour, 1997) Let Y = (Y1,...,Yn )' ' and 
X = X0 ,...,Xn−1( )'' be two n x 1 random vectors which satisfy Assumptions (16)and 
(17). Suppose further that P Yt = m0[ ] = 0  for t = 1,...,n,  and let gt = gt (It ) , 
t = 0,...,n−1  be a sequence of measurable functions of I

t
 such that P gt = 0[ ] = 0  

for t = 0,...,n−1.

(a) Then the sign statistic Sg m0( )  defined by (19) follows a Bi(n,0.5) distribution, 
that is

P Sg m0( ) = x⎡⎣ ⎤⎦= lnx( ) 1 / 2( )n forx = 0,1,...,n,where lnx( ) = n! / x!(n− x)![ ].
n

x  
P Sg m0( ) = x⎡⎣ ⎤⎦= lnx( ) 1 / 2( )n forx = 0,1,...,n,where lnx( ) = n! / x!(n− x)![ ].

 
for x = 0,1,…,n, where

 

n

x  
P Sg m0( ) = x⎡⎣ ⎤⎦= lnx( ) 1 / 2( )n forx = 0,1,...,n,where lnx( ) = n! / x!(n− x)![ ].

(b) If Assumption (18) also holds, then the signed rank statistic SRg m0( )  

defined in (20) is distributed as the Wilcoxon signed rank variate W = t
t=1

n

∑ Bt, where 

B1,...,Bn  
are independent Bernoulli variables such that P Bt = 0[ ] = P Bt = 1[ ] = 1 / 2,

 
P Bt = 0[ ] = P Bt = 1[ ] = 1 / 2,

t = 1,...,n.

Now one has to deal with the fact that the centering parameter m
0
 is unknown. 

To obtain provably valid finite-sample procedures for an unknown  m
0
, Campbell 

and Dufour (1997) adopt a three-stage approach introduced in Dufour (1990). First, 
they find an exact confidence set for the nuisance parameter m

0
 which is valid at 
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least under the null hypothesis. Second, corresponding to each value m in the 
confidence set, they construct a nonparametric test based on the methods discussed 
in Section 2.1. Third, the latter are combined with the confidence set for m

0
 using 

Bonferroni’s inequality to obtain valid nonparametric tests at the desired level α. 
Formally, let CS(α

1
) be a confidence set for m

0
 with level 1–α

1
 ( P m0 ∈CS(α1)[ ] ≥1−α1,

for α1 < α), which is valid either on the assumption that Y
t
 has median m

0
 for 

t = 1,...,n  or that Y
t
 is symmetric about m

0
 for each t. Different approaches to the 

construction of CS(α1)  based on counting procedures are discussed in Campbell 
and Dufour (1997: 157-158). The following proposition provides probability bounds 
for the events that Sg m( )  

in (19) is significant (or nonsignificant) at an appropriate 
level for all m ∈CS(α1)  for both one-sided and two-sided tests, and similarly for 
SRg m( )  

in (20).

Proposition 5 (Campbell and Dufour, 1997) Let Y = (Y1,...,Yn )'' and 

X = X0 ,...,Xn−1( )'' be two n x 1 random vectors which satisfy Assumptions (16) and 

(17) with P Yt = m0[ ] = 0
 
for t = 1,...,n,  and let gt = gt (It ) , t = 0,...,n−1  be a 

sequence of measurable functions of I
t
 such that P gt = 0[ ] = 0

 
for t = 0,...,n−1.  

Let also Sg m( ) ,  
SRg m( ) , Sg .( )

 
and SRg .( )  be defined by (19), (20) and

P Sg m0( ) > Sg α( )⎡⎣ ⎤⎦≤ α,P SRg m0( ) > SRg α( )⎡⎣ ⎤⎦≤ α,for any 0 ≤ α ≤1,
 

P Sg m0( ) > Sg α( )⎡⎣ ⎤⎦≤ α,P SRg m0( ) > SRg α( )⎡⎣ ⎤⎦≤ α,for any 0 ≤ α ≤1,

let !Sg δ( ) = n− Sg 1−δ( ) and SR
!

δ( ) = n n+1( ) / 2( )− SRg 1−δ( ) for any 0 ≤ δ ≤1, and 
choose a, a

1
, a

2
, and a

3 
in the interval 0,1[ ]  such that 0 ≤ α2 ≤ α−α1 ≤ α+α1 ≤ α3 ≤1.

(a) If CS(α1)  is a confidence set for m
0
 such that P m0 ∈CS(α1)[ ] ≥1−α1,  

then

P Sg m( ) > Sg α2( ) ,∀m ∈CS(α1)⎡⎣ ⎤⎦≤ α1 +α2 ≤ α,  (7a)

P M − Sg m( ) > Sg α2( ) ,∀m ∈CS(α1)⎡⎣ ⎤⎦≤ α1 +α2 ,  (7b)

P max Sg m( ) ,M − Sg m( ){ } > Sg α2 / 2( ) ,∀m ∈CS(α1)⎡
⎣

⎤
⎦≤ α1 +α2  (7c)

P Sg m( ) < !Sg α3( ) ,∀m ∈CS(α1)⎡
⎣

⎤
⎦≤1− (α3 −α1) ≤1−α,  (7d)

P M − Sg m( ) < !Sg α3( ) ,∀m ∈CS(α1)⎡
⎣

⎤
⎦≤1− (α3 −α1),  (7e)

P max Sg m( ) ,M − Sg m( ){ } < !Sg α3 / 2( ) ,∀m ∈CS(α1)⎡
⎣

⎤
⎦≤1− (α3 −α1),  (7f)

with M = n.

(b) If the additional Assumption (18) holds and K α1( )  
is a confidence set for 

m
0
 such that P m0 ∈ K α1( )⎡⎣ ⎤⎦≥1−α1,

 
then the inequalities (7a) to (7f) also hold 

with Sg m( )  
replaced by SRg m( ) , Sg .( ) by SRg .( ) , !Sg .( ) by SR

!
g .( ) , CS(α1) by 

K α1( ) , and M by M' = n(n21)/2.
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The above proposition suggests the following bounds test for the hypothesis 
that Y

t
 is orthogonal to past information I

t–1
, for t = 1,…n. Using the notations 

adopted in Proposition 5, Campbell and Dufour (1997) define

QL (Sg ) = Inf Sg m( ) : m ∈CS(α1){ },QL (SRg ) = Inf SRg m( ) : m ∈ K(α1){ }  (8a)

QU (Sg ) = Sup Sg m( ) : m ∈CS(α1){ },QU (SRg ) = SupSRg m( ) : m ∈ K(α1){ }. (8b)

Using Proposition 5(a), it is clear that

P QL (Sg ) > Sg α2( )⎡⎣ ⎤⎦≤ α,P QU (Sg ) < !Sg α3( )⎡
⎣

⎤
⎦≤1−α,

 
P QL (Sg ) > Sg α2( )⎡⎣ ⎤⎦≤ α,P QU (Sg ) < !Sg α3( )⎡

⎣
⎤
⎦≤1−α,

 
(8c)

where the conjunction of the events QL (Sg ) > Sg α2( )  and QU (Sg ) < !Sg α3( )  has 

probability zero, and similarly for QL (SRg )  
and QU (SRg ).  

Thus, as pointed out in 

Campbell and Dufour (1997), a reasonable right one-sided test would reject the 

hypothesis of conditional independence (H0 :β = 0)
 
if QL (Sg ) > Sg α2( )  (alterna-

tively, if QL (SRg ) > SRg α2( )), and would accept it if QU (Sg ) < !Sg α3( ) (alternatively, 

if QU (SRg ) < SRg α3( ) ); otherwise, the test is considered inconclusive. Based on 

the results of Proposition 5, Campbell and Dufour (1997) suggest to set α2 = α−α1  

and α3 = α+α1.  
Now, to obtain a left one-sided test, one can proceed in exactly 

the same way with Sg m( )  replaced by M − Sg m( ) = n− Sg m( ) ,  and SRg (m)
 
by 

M' − SRg m( ).  Finally, a two-sided sign test with level α is obtained by 

considering

QBL (Sg ) = Inf max Sg m( ) ,M − Sg m( ){ } : m ∈CS(α1){ },

QBU (Sg ) = Sup max Sg m( ) ,M − Sg m( ){ } : m ∈CS(α1){ },

and then taking QBL (Sg ) > Sg α2( ) ,  and QBU (Sg ) < !Sg α3 / 2( )  as the rejection and 
acceptance regions, respectively.

Luger (2003) extends the nonparametric approach of Campbell and Dufour 
(1997) to testing for a random walk with an unknown drift. Instead of using the 
three-stage approach of Dufour (1990), which requires to find an exact confidence 
set for the nuisance parameter m

0
, Luger (2003) suggests to eliminate the drift 

term using long differences in a way that preserves the properties of the original 
errors e

t
.
 
In particular, he shows that long differencing does not introduce any 

correlation among the error terms as subtracting an estimated drift would.

Formally, Luger (2003) proposes a sign-based test for testing H0 :β = 1  in the 
context of regression model in (15). To this end, he considers the first-difference 
Δyt = yt − yt−1,  for t = 1,2...,n. The basic building block of his testing procedure 
is the following quantity: 

zt = Δyt+l −Δyt ,for t = 1,2...,l,where l =
n

2
.
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He assumes that n is even, so that the midpoint l is an integer. As in Campbell and 
Dufour (1995, 1997), he considers the class of linear signed rank statistics defined by: 

SRl = u
t=1

l

∑ Δyt+l −Δyt( )al Rt
+( ) ,  (21)

where u .( )  is defined in the previous sections, al .( )  
is some weighting function, and 

Rt
+

 
is the rank of Δyt+l −Δyt defined in a similar way as in the previous sections.

To establish the finite-sample distribution of the test statistic in (21), Luger 
(2003) considers the following assumptions. He first assumes that

the density of the vector of the error terms en = (e
1
,…,e

n
)' is symmetric. (22)

He also assumes that

P εn = 0⎡⎣ ⎤⎦= 0.  (23)

Assumptions (22) and (23) imply that the error terms may have discrete distributions 
provided the assumption (23) is satisfied, i.e., there is no mass at zero. Furthermore, 
as shown in Luger (2003) several models of time-varying conditional variance, 
such as GARCH-type or stochastic volatility models, satisfy the multivariate 
symmetric assumption in (22).

Luger (2003) derives the following finite-sample distribution for the test statistic 
in (21) based on the following two observations: (i) under the null hypothesis (β = 1) 
the test statistic in (21) is a function only of ( εt+l −εt ), for t = 1,2,...,l,  and (ii) 
under assumptions (22) and (23), the sign u εt+l −εt( )  

is distributed as a Bernoulli 
variable Bi(1,0.5).

Theorem 1 (Luger, 2003) Let ε1,...,εn  
be a sequence of random variables 

that satisfy Assumptions (22) and (23). Then, the null distribution of any linear 
signed rank statistic defined by (21) has the property that

SRl = u
t=1

l

∑ Δyt+l −Δyt( )al Rt
+( )=

d
Bi

t=1

l

∑ al i( ) ,

where B1,...,Bl 
are mutually independent uniform Bernoulli variables on 0,1{ }.

Two special cases of the test statistic in (21) that have the usual distributions are: 

Sl = u
t=1

l

∑ Δyt+l −Δyt( ) ,  (24)

Wl = u
t=1

l

∑ Δyt+l −Δyt( )Rt
+ ,  (25)

where the first one is obtained from the score function al i( ) = 1
 
and the second 

one (Wilcoxon signed rank statistic) is obtained with al i( ) = i.
 
The following 

result, which is an immediate corollary to the above Theorem, provides the 
finite-sample distributions of the test statistics (24) and (25).
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Corollary 1 (Luger, 2003) Let the model given by (15) hold with Assumptions 
(22) and (23). Then, under the null H0 :β = 1,

(i) The statistic S
l
 defined by (24) is distributed according to Bi(l,0.5).

(ii) The statistic W
l
 defined by (25) is distributed like W l( ) = i

t=1

l

∑ Bi , where 

B
1
,…,B

l
 are mutually independent uniform Bernoulli variables on 0,1{ }.

The sign-based statistics S
l
 and W

l
 have the virtues of those in Campbell and 

Dufour (1997): they have known finite-sample distributions, they are robust to 
departures from Gaussian conditions that underlie many parametric tests, and they 
are invariant to unknown forms of conditional heteroscedasticity. However, as 
pointed out by Luger (2003), the cost of these procedures is that only half the 
sample ( l = T / 2 ) is used to detect departures from the null. Using simulation 
experiments, Luger (2003) argues that this is still less than the cost of the Campbell 
and Dufour (1997) three-step approach. In other words, although the procedures 
proposed by Luger (2003) only use half the sample observations, their power can 
be considerably superior to the bounds tests of Campbell and Dufour (1997), 
especially for alternatives close to the null.

3. sIgn-based tests for multIple regressIon

In this section, we review several recent sign-based tests that have been proposed 
for testing the orthogonality between random variables in the context of linear and 
non-linear multiple regressions. We distinguish between tests that are valid for independ-
ent and dependent data. We start with point-optimal sign-based tests (hereafter POS 
test) proposed by Dufour and Taamouti (2010) for testing the parameters of linear and 
nonlinear multiple regression models with independent data. For these tests, we consider 
in turn two problems. The first one consists in testing whether the conditional median 
of a vector of observation is zero against a linear regression alternative. The second 
one tests whether the coefficients of a possibly nonlinear median regression function 
have a given value against another nonlinear median regression. We next discuss the 
sign-based tests proposed by Coudin and Dufour (2009) in the context of linear multiple 
regression models with dependent data.

3.1 Sign-based Tests for Independent Data

3.1.1 Sign-based Tests for Testing the Zero Coefficient Hypothesis in Linear 
Regressions

We consider the regression model in (1), with f Xt;β( )  
is taken as a linear 

function of the parameters of interest: 

Yt = Xt

'
β+εt , t = 1,…,n,' Yt = Xt

'
β+εt , t = 1,…,n,  (26)
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where X
t
 is a k x 1 vector of explanatory variables, β ∈ !k

 is an unknown parameter 
vector, and the errors ε1,…,εn  

are independent conditional on X with

P[εt > 0 | X] = P[εt < 0 | X] =
1

2
,t = 1,…,n,
 
t = 1,…, n, (27)

where X = [x1,…,xn ]
'
'
 
is an n× k  matrix. Assumption (27) entails that e

t
 has no 

mass at zero, i.e. P[εt = 0 | X] = 0
 
for all t. Suppose we wish to test the null 

hypothesis

H0 :β = 0  (28)

against the alternative hypothesis

H1 :β = β1.  (29)

Dufour and Taamouti (2010) propose the following POS test for the null hypothesis 
(28) against the alternative hypothesis (29). We then have the following result.

Proposition 6 (Dufour and Taamouti, 2010) Under the assumptions (26)
and (27), let H

0
 and H

1
 be defined by (28)-(29),

SLn (β1) =
t=1

n

∑at (β1)u(Yt ),

where u(.) is defined in equation (11),

at (β1) = ln
1−P[εt ≤ −Xt

'β1 | X]

P[εt ≤ −Xt
'β1 | X]

⎡

⎣
⎢

⎤

⎦
⎥,  (30)

and suppose the constant c1(β1)  satisfies P
t=1

n

∑ at (β1)u(Yt ) > c1(β1)⎡
⎣⎢

⎤
⎦⎥

= α
n

 under  

H
0
, with 0 < α < 1.  Then the test that rejects H

0 
when

SLn (β1) > c1(β1)  (31)

is most powerful (conditional on X) for testing H
0 
against H

1 
among level-α tests 

based on the signs (u(Y1),…,u(Yn ))
'
.'.

Under H
0
,
 
the signs u(Y1),…,u(Yn )  

are i.i.d. according to a Bernoulli Bi(1,0.5). 
The distribution of the test statistic only depends on the weights at (β1)  

and thus 
does not involve any nuisance parameter under the null hypothesis. In view of the 
nonparametric nature of assumption (27), this means that tests based on SLn (β1), 
such as the test given by (31), are distribution-free and robust against heteroskedas-
ticity of unknown form. It is a nonparametric pivotal function.

Under the alternative hypothesis, however, the power function of the test based 
on SLn (β1)  

depends on the form of the distribution function of e
t
. An interesting 

special case is the one where ε1,…,εn  
are i.i.d. according to a N(0,1)  distribution. 

Then the optimal test statistic SLn (β1)  takes the form: 
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SLn
∗ (β1) =

t=1

n

∑ln
Φ(Xt

'β1)

1−Φ(Xt
'β1)

⎡

⎣
⎢

⎤

⎦
⎥u(Yt ),  (32)

where Φ(⋅)  is the standard normal distribution function.

In view of the above characterization of the distribution of SLn (β1),  its distri-
bution can be simulated under the null hypothesis and the relevant critical values 
can be evaluated to any degree of precision with a sufficient number of replications. 
Since the test statistic (32) is a continuous variable, its quantiles are easy to compute. 
To simulate SLn

∗ (β1)  we first generate a sequence u(yt ){ }i=1

n

 
under the null hypothesis. 

In particular, we generate a sequence u(εi ){ }i=1

n

 
which satisfies the condition (27). 

The variable u(εt )  
takes only two values 0 and 1, so the computation of test statistic 

SLn
∗ (β1)  

reduces to generating a sequence of Bernoulli random variables of given 
length with subsequent summation and the corresponding weights. The algorithm 
for implementing the POS test can be described as follows: 

1. compute the test statistic SLn
∗ (β1)  based on the observed data, say SLn

∗ (β1)(0);

2. generate a sequence of Bernoulli random variables u(εi ){ }i=1

n

 
satisfying (27);

3. compute SLn
∗ (β1)( j) using u(εi ){ }i=1

n
 and the corresponding weights ai (β1){ }i=1

n
;

4. choose B such that α(B+1)  is an integer and repeat steps 1-3 B times;

5. compute the (1–α)–quantile, say c(β1), of the sequence SLn
∗ (β1)( j){ }

j=1

B
;

6. reject the null hypothesis at level α if SLn
∗ (β1)(0) ≥ c(β1) .

3.1.2 Sign-based tests for testing general full coefficient hypotheses in nonlinear 
regressions

We now consider the nonlinear regression model in (1): 

Yt = f (Xt ,β)+εt ,t = 1,…,n,  (33)

where X
t 
is an observable k x 1 vector of fixed explanatory variables, f (⋅)  is a scalar 

function, β ∈ !k

 is an unknown vector of parameters, and the errors ε1,…,εn  
are 

independent conditional on X with a distribution that satisfies (27). Here it is not 
required that the parameter vector β is identified.

Suppose we wish to test the null hypothesis

H(β0 ) :β = β0  (34)

against the alternative hypothesis

H(β1) :β = β1.  (35)

Dufour and Taamouti (2010) show that a point optimal sign-based test for H(β0 )
against H(β1)  can be constructed as in Section 3.1.1. They derive the following 
sign-based test for the null hypothesis H(β0 )  against H(β1) .
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Proposition 7 (Dufour and Taamouti, 2010) Under the assumptions (33) 
and (27), let H(β0 )

 
and H(β1)  be defined by (34)-(35),

SNn (β0 |β1) =
t=1

n

∑!at (β0 |β1)u Yt − f (Xt ,β0 )( ) ,  (36)

where

!at (β0 |β1) = ln
1− p(Xt ,β0 ,β1 | X)

p(Xt ,β0 ,β1 | X)

⎡

⎣
⎢

⎤

⎦
⎥,

and suppose the constant c1(β0 ,β1) satisfies

P
t=1

n

∑ !at (β0 |β1)u Yt − f (Xt ,β0 )( ) > c1(β0 ,β1)⎡
⎣⎢

⎤
⎦⎥

= α

under H(β0 ), with 0 < α < 1. Then the test that rejects H(β0 )
 
when

SNn (β0 |β1) > c1(β0 ,β1)

is most powerful (conditional on X) for testing H(β0 )  
against H(β1)  among 

level-α tests based on the signs (u(Y1 − f (X1,β0 )),…,u(Yn − f (Xn ,β0 )))
'
.'.

The test statistic SNn (β0 |β1) in (36) depends on a particular alternative hypoth-
esis β

1
. In practice, the latter is supposed to be unknown which makes the proposed 

POS test unfeasible. To overcome this problem, Dufour and Taamouti (2010) 
propose an approach (called adaptive approach) to choose the alternative β

1 
at 

which the power of POS test is close to the power envelope. They suggest to use 
what is known as “ split-sample technique” to choose β

1 
such that the power of 

POS test is close to the power envelope. The alternative hypothesis β
1 
is unknown 

and a practical problem consists in finding its independent estimate. To make size 
control easier, Dufour and Taamouti (2010) estimate β

1 
from a sample which is 

independent of the one used to compute the POS test statistic. This can be easily 
done by splitting the sample. The idea is to divide the sample into two independent 
parts and use the first one to estimate the value of the alternative and the second 
one to compute the POS test statistic. For more details about the above adaptive 
approach the reader can consult Section 4 of Dufour and Taamouti (2010).

Finally, Dufour and Taamouti (2010) have also describe how to build confidence 
regions with known significance level α, say Cβ(α),  

for a vector of unknown 
parameters β

 
and its individual components using the above POS tests. For more 

details the reader is referred to their Section 4.

3.2 Sign-based Tests for Dependent Data

Coudin and Dufour (2009) develop finite-sample and distribution-free sign-based 
tests and confidence sets for the parameters of a linear regression model, where no 
parametric assumption is imposed on the noise distribution. In addition to non- 
normality and heteroscedasticity, their set-up allows for nonlinear serial dependence 
of unknown forms. To build their sign tests, they first consider a mediangale structure 
– the median-based analogue of a martingale difference – under which they show 
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that the signs of mediangale sequences follow a nuisance-parameter-free distribution 
despite the presence of non-linear dependence and heterogeneity of unknown form. 
The mediangale assumption is crucial for the construction of their tests. They dis-
tinguish between weak and strict conditional mediangale. Roughly speaking, the 
process of the error term ε = εt : t = 1,2,...{ }  is a weak mediangale conditional on 
X if: 

P ε1 < 0 X⎡⎣ ⎤⎦= P ε1 > 0 X⎡⎣ ⎤⎦andP εt < 0 ε1,...,εt−1,X⎡⎣ ⎤⎦= P
 
and

P ε1 < 0 X⎡⎣ ⎤⎦= P ε1 > 0 X⎡⎣ ⎤⎦andP εt < 0 ε1,...,εt−1,X⎡⎣ ⎤⎦= P εt > 0 ε1,...,εt−1,X⎡⎣ ⎤⎦,fort > 1.
 

εt > 0 ε1,...,εt−1,X⎡⎣ ⎤⎦,fort > 1.
 

(37) 

The definition of weak conditional mediangale allows e
t 
to have a discrete distri-

bution with a non-zero probability mass at zero. A more restrictive version, called 
strict conditional mediangale, imposes a zero probability mass at zero. Then, 
P ε1 < 0 X⎡⎣ ⎤⎦= P ε1 > 0 X⎡⎣ ⎤⎦= 0.5  and P εt < 0 ε1,...,εt−1,X⎡⎣ ⎤⎦= P εt > 0 ε1,...,εt−1,X⎡⎣ ⎤⎦
= 0.5 , for t > 1 .

Coudin and Dufour (2009) show that for the regression model in (26) and under 
strict conditional mediangale assumption on the process e, the residual sign 
vector

s Y −Xβ( ) = s Y1 − X1
'β( ) ,...,s Yn − Xn

' β( )⎡
⎣

⎤
⎦
'

has a nuisance-parameter-free distribution (conditional on X), i.e. it is a “pivotal 
function”. This implies that its distribution is easy to simulate from a combination 
of n independent uniform Bernoulli variables. Consequently, any statistic of the form 
T = T (s(Y −Xβ),X)  is pivotal, conditional on X. Once the form of T is specified, 
the distribution of the statistic T is totally determined and can also be simulated.

If we wish to test H0 :β = β0  
against H1 :β ≠β0 , then using the above result 

and under H
0
, s Yt − Xt

'β0( ) = s εt( ) ,  t = 1,...,n,  and conditional on X,

T (s(Y −Xβ0 ),X) ∼ T Sn ,X( ) ,

where Sn = s1,...,sn( )  
and s1,...,sn ∼

i.i.d .
Bernoulli(1 / 2).  This means that a test with 

level α rejects H
0 
when

T (s(Y −Xβ0 ),X) > cT (X ,α),

where cT (X ,α)  is the 1−α( ) -quantile of the distribution of T Sn ,X( ) .
 
Coudin 

and Dufour (2009) extend the above result to the distributions with a positive mass 
at zero; see their Proposition 3.2.

As a particular case of T (s(Y −Xβ0 ),X),  they consider the following test 
statistic: 

DS β0 ,Ωn( ) = s(Y −Xβ0 )' XΩn s(Y −Xβ0 ),X( )X' s(Y −Xβ0 ),

where Ωn s(Y −Xβ0 ),X( )  is a p× p  weight matrix that depends on the constrained 
signs s(Y −Xβ0 )  under H

0
. They argue that the weight matrix Ωn s(Y −Xβ0 ),X( )  
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provides a standardization that can be useful for power considerations as well as 
to account for dependence schemes that cannot be eliminated by the sign trans-
formation. Furthermore, statistics of the form DS β0 ,Ωn( )  include as special cases 
the ones studied by Koenker and Bassett (1982) and Boldin et al. (1997). In other 
words, by taking Ωn = I p  

and Ωn = (X'X)−1(X'X)-1, we get: 

SB(β0 ) = s(Y −Xβ0 )' XX' s(Y −Xβ0 ) = X' s(Y −Xβ0 )
2
,

2
,

SF(β0 ) = s(Y −Xβ0 )' X(X'X)−1X' s(Y −Xβ0 ) = X' s(Y −Xβ0 )
M

2
.

2

m
.

Boldin et al. (1997) show that SB(β0 )  
and SF(β0 )  can be associated with locally 

most powerful tests in the case of i.i.d. disturbances under some regularity conditions 
on the distribution function. Coudin and Dufour (2009) have extended the proof 
of Boldin et al. (1997) to disturbances that satisfy the mediangale property and for 
which the conditional density at zero is the same ft (0 X) = f (0 X), t = 1,...,n. They 
provide the following form of the locally optimal test statistic which is associated 
with the mean curvature, i.e. the test with the highest power near the null hypothesis 
according to a trace argument.

Proposition 8 (Coudin and Dufour, 2009) In model (26), suppose the medi-
angale Assumption (37) holds, and the disturbances e

t
 are heteroscedastic with 

conditional densities ft (. X) , t = 1,2,... , which are continuously differentiable 
around zero and such that ft

' (. X) = 0 . Then, the locally optimal sign-based 
statistic associated with the mean curvature is

SB
!

(β0 ) = s(Y −Xβ0 )' X
!

X
!

'

s(Y −Xβ0 ),' '

where X
!

= diag f1(. X),..., fn (. X)( )X.

When fi (. X)’s are unknown, the optimal statistic is not feasible. In this case, 
the optimal weights must be replaced by approximations, such as weights derived 
from the normal distribution.

Coudin and Dufour (2009) discuss the implementation of the above test in the 
case of linearly dependent processes. In the case of discrete distribution and to 
reach the nominal level when using the above test, they propose to use the technique 
of Monte Carlo tests with a randomized tie-breaking procedure.

Finally, Coudin and Dufour (2009) discuss how to build confidence sets for 
the vector β or for its individual components. For more details the reader is referred 
to their Section 4.

4. applIcatIons

4.1 Testing the Long-horizon Predictability of Stock Returns

One of the main issues of stock return predictability regressions in finance is the 
persistent or near-nonstationary behavior of the regressors such as dividend-price ratio, 
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which leads to well known problems of size distortion in predictability testing, see 
Mankiw and Shapiro (1986). This issue has generated substantial interest in both 
econometrics and empirical finance; see Cavanagh, Elliott and Stock (1995); Stambaugh 
(1999); Campbell and Yogo (2006); Jansson and Moreira (2006), among many others.

To overcome this problem, Liu and Maynard (2007) have recently suggested 
to use the sign and signed rank tests of Campbell and Dufour (1995, 1997). Their 
motivation is that the sign-based tests provide correct size without any modeling 
assumptions whatsoever on the regressor. In addition, these tests offer exact finite 
sample inference under weak conditions.

However, Liu and Maynard (2007) point out that one practical limitation of 
finite sample sign and signed rank tests is that they require white noise assumptions 
on the dependent variable under the null hypothesis, which rules out the direct 
application of these robust tests to long-horizon predictability regressions. The 
reason that sign tests cannot be directly applied to long-horizon regressions is that 
the return horizon in these regressions (e.g. 4 years) typically exceeds the sampling 
frequency (e.g. 1 month). Thus, the returns on the left-hand side (LHS) of the 
predictive regression overlap for multiple periods thereby violating the required 
white noise assumptions.

To make the sign and signed rank tests applicable to long-horizon predictability 
regressions, Liu and Maynard (2007) suggest to rearrange the predictive regression 
considered earlier in the finance literature such as in Jegadeesh (1991) and Cochrane 
(1991). The latter show that the regression of a long-horizon return on a single 
period predictor may be replaced by a regression of a one period return on a 
long-horizon regressor without fundamentally altering the interpretation of the 
null hypothesis. Thus, replacing a long-horizon LHS variable with a long-horizon 
right-hand side (RHS) variable one recover the white noise assumption on the LHS 
variable under the null hypothesis. Formally, Liu and Maynard (2007) first consider 
the following traditional predictive regression: 

Yt+k
k = α k( )+β k( )Xt +ε1,t+k

k ,
 

(38) 

where Yt+k
k = Yt+1 + ...+Yt+k  

defines the k-period return and residual, ε1,t+1
k , 

satisfies

ε1,t+1
k = ε1,t+1 + ...+ε1,t+k

when the null hypothesis of unpredictability ( H0 :β k( ) = 0 ) is true. Since in 
practice X

t
 is typically a persistent regressor and its process might present some 

correlation with the error term ε1,t+1
k ,  this affects the statistical behavior of the OLS 

estimator β̂ k( )  and leads to invalid inference when using the classical t-test or 
F-test; see Cavanagh, Elliott and Stock (1995); Stambaugh (1999); Campbell and 
Yogo (2006); Jansson and Moreira (2006) among many others.

Because of the persistence in X
t
 and the loss of white noise assumption on the 

dependent variable Yt+k
k

 
under the null hypothesis, instead of employing the sign 
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and signed rank methods to test (38) directly, Liu and Maynard (2007) instead 
follow an approach similar to that of Jegadeesh (1991) and Cochrane (1991) who 
base their test of β k( ) = 0  on a simple rearrangement of (38) under the null 
hypothesis, that avoids the serial correlation in the residuals. They define a long-hori-
zon version of the regressor X

t
 as: 

Xt
k = Xt−k+1 + Xt−k+2 + ...+ Xt

and they show that when X
t
 is stationary, the long-horizon non-predictability restriction 

β k( ) = 0  is equivalent to the orthogonality condition cov(Yt+k
k ,Xt ) = 0  and

cov(Yt+k
k ,Xt ) = cov(Yt+1,Xt

k ),

where the latter covariance is the numerator of the slope coefficient γ(k) in the 
regression of Yt+1  

on Xt
k :

Yt+1 = γ0 k( )+ γ k( )Xt
k + vt+1.  

(39) 

Thus, the restriction of the null hypothesis, β k( ) = 0  in (38) is equivalent to the 
null restriction that γ k( ) = 0  in (39). Consequently, Liu and Maynard (2007) test 
the null hypothesis β k( ) = 0  using the following sign and signed rank test 
statistics: 

Sn
k = u

t=1

n−1

∑ Yt+1 −m0( )Xt
k∗⎡⎣ ⎤⎦, SRn

k = u
t=1

n−1

∑ Yt+1 −m0( )Xt
k∗⎡⎣ ⎤⎦Rt+1

+ m0( ) ,Sn
k = u

t=1

n−1

∑ Yt+1 −m0( )Xt
k∗⎡⎣ ⎤⎦, SRn

k = u
t=1

n−1

∑ Yt+1 −m0( )Xt
k∗⎡⎣ ⎤⎦Rt+1

+ m0( ) ,

where the functions u .[ ]  and Rt+1
+

 
are defined in the previous sections, m

0
 is the 

unconditional median for Y
t
, and Xt

k∗ ≡ Xt
k −med1

t Xt
k( )  is the value of Xt

k  centred 
about the sample median of X1

k ,...,Xt
k .

 
Campbell and Dufour (1997) argue that 

centering of this type is known to improve test power, but does not affect size as 
med1

t Xt
k( )  

is predetermined. The finite sample distributions of Sn
k

 
and SRn

k

 
which 

one can use to make a decision about H
0
 are defined in Campbell and Dufour (1997).

Using the one-month treasury bill and the dividend-price ratio as predictors of 
stock returns, with return horizons ranging from one-month to four years, Liu and 
Maynard (2007) confirm the existing evidence of stock return predictability using 
the treasury bill at short to medium horizons, but find no significant evidence of 
predictability at either short or long-horizons employing the dividend-price ratio 
as a predictor.

4.2 Testing the Mean-variance Efficiency

Using the results of Luger (2003) discussed above, Gungor and Luger (2009) 
develop exact distribution-free sign-based tests of unconditional mean-variance 
efficiency. To derive their tests, Gungor and Luger (2009) consider the following 
traditionally used excess-return system of equations: 

rit = αi +βirpt +εit ,fort = 1,...,Tandi = 1,...,N , for rit = αi +βirpt +εit ,fort = 1,...,Tandi = 1,...,N , and i = 1,…,N,
 

(40) 
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where r
it
 and r

pt
 are the time-t returns on asset i and portfolio p, respectively, in 

excess of the riskless rate, and e
it
  is a random error term for asset i in period t with 

the property that E εit[ ] = 0.
The mean-variance efficiency condition that states that

E rit[ ] = βirpt ,i = 1,...,N ,
 

E rit[ ] = βirpt ,i = 1,...,N ,
 

(41) 

can be assessed by testing: 

H0 :αi = 0,i = 1,...,N , H0 :αi = 0,i = 1,...,N ,  
(42) 

in the regression equation (40). This null hypothesis follows from a comparison 
of the unconditional expectation in (41) to the mean-variance efficiency condition 
in equation (40). If H

0
 does not hold, it would be possible to obtain a higher expected 

return with no higher risk, contradicting the hypothesis that portfolio p is mean-vari-
ance efficient.

To test H
0
 using exact sign-based tests, Gungor and Luger (2009) first consider 

the following transformation of the regression model in (40)

rit

rpt

=
αi

rpt

+βi +
εit

rpt

,

where the slope parameter β
i
 is viewed now as an intercept. Thereafter, the nuisance 

parameter βi can be eliminated from the inference problem via the long differences, 
and this leads to the following new regression: 

dt

T

2

⎛
⎝
⎜

⎞
⎠
⎟

= αix pt +

ε
it+

T

2

r
p,t+

T

2

−
εit

rpt

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,

 

(43)

where the new dependent variable

 
dt

T

2

⎛
⎝
⎜

⎞
⎠
⎟

= r
i,t+

T

2

/ r
p,t+

T

2

− rit / rpt

  

and the new independent 

variable xpt = rpt − r
p,t+

T

2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ / rptrp,t+

T

2

. Using the results in Luger (2003) and based 

on the regression model in, Gungor and Luger (2009) suggest to test H
0 

using the 

test statistics

SB = max
1≤i≤N

Si , WB = max
1≤i≤N

SRi ,

where the sign-based statistics Si = u
t=1

T /2

∑ dt

T

2

⎛
⎝
⎜

⎞
⎠
⎟
xpt

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  and SRi = u

t=1

T /2

∑ dt

T

2

⎛
⎝
⎜

⎞
⎠
⎟
xpt

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ R+

t
.  

They also consider the following asymptotic versions of the test statistics SB and
WB that are based on the normally distributed approximations of the statistics S

i
 and SR

i
:

SB∗ = max
1≤i≤N

Si
∗ ,WB∗ = max

1≤i≤N
SRi

∗ ,
 

SB∗ = max
1≤i≤N

Si
∗ ,WB∗ = max

1≤i≤N
SRi

∗ ,

 

(44)
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where

Si
∗ =

Si −T / 4

T / 8
, SRi

∗ =
SRi −T (T + 2) / 16

T (T + 2) T +1( ) / 96
.

 

Si
∗ =

Si −T / 4

T / 8
, SRi

∗ =
SRi −T (T + 2) / 16

T (T + 2) T +1( ) / 96
.

 

(45)

As shown in Gungor and Luger (2009), the maximal statistics in (44) correspond 
to the ones with the smallest p-values, since the individual test statistics in (45) are 
identically distributed. The motivation behind using the maximal statistics is 
because H

0
 in (42) can be viewed as the intersection of the N subhypotheses 

H0i :αi = 0, i = 1,...,N . Consequently, the decision rule is then built from the 
equivalence that H

0
 is false if any of its subhypotheses is false; i.e., one rejects H

0
  

if any one of the separate tests, say S1
∗,…, SN

∗ , rejects it.

Finally, Gungor and Luger (2009), based on the results of Sidak (1967), argue 
that the asymptotic marginal null distributions of SB* and WB* satisfy the 
inequalities

P SB∗ ≤ ω
α∗ /2

⎡
⎣

⎤
⎦≥ 1−α( )andP WB∗ ≤ ω

α∗ /2
⎡
⎣

⎤
⎦≥ 1−α( ) ,

 
and P

 
P SB∗ ≤ ω

α∗ /2
⎡
⎣

⎤
⎦≥ 1−α( )andP WB∗ ≤ ω

α∗ /2
⎡
⎣

⎤
⎦≥ 1−α( ) ,

 

(46)

where ω
α∗ /2

is the upper α∗ / 2  critical point of the standard normal distribution 

and α∗ = 1− (1−α)1/N . The above inequalities in (46) indicate that asymptotically 

the level of the test of H
0
 that compares either SB* or WB* to ω

α∗ /2
is equal to α. 

This means that if the ordinary two-sided p-value of SB* or WB* is, say pv, then 

the multiplicity-adjusted two-sided p-value is calculated from the equation 

pv∗ = 1− (1− pv)N .

Finally, an extension of the mean-variance efficiency sign-based test of Gungor 
and Luger (2009) can be found in Gungor and Luger (2013). The latter provide a 
sign-based statistical procedure that allows one to test the beta-pricing representation 
of linear factor pricing models, instead of the single market factor model in (40). 
Exploiting results from Coudin and Dufour (2009), Gungor and Luger (2013) obtain 
tests of multi-beta pricing representations that relax three assumptions of the prominent 
mean-variance efficiency test of Gibbons, Ross, and Shanken (1989): (i) the assumption 
of identically distributed disturbances, (ii) the assumption of normally distributed 
disturbances, and (iii) the restriction on the number of assets. A very attractive feature 
of Gungor and Luger’s (2013) test is that it is applicable even if the number of assets 
is greater than the length of the time series. This stands in sharp contrast to the 
Gibbons, Ross, and Shanken’s (1989) test and other approaches that are based on 
usual estimates of the disturbance covariance matrix. It is worth mentioning that, 
the main drawback of Gibbons, Ross, and Shanken’s (1989) approach is that to avoid 
singularities and be computable, this test requires the size of the cross section (number 
of assets) to be less than that of the time series. Consequently, the power of this test 
and others is negatively affected by the number of assets under consideration. In 
other words, the number of covariances that need to be estimated grows rapidly with 
the number of included assets. As a result, the precision with which this increasing 
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number of parameters can be estimated deteriorates given a fixed time-series length, 
which decreases the power of the tests. In contrast, a simulation experiment that 
compares the performance of the Gungor and Luger’s (2013) test with several standard 
tests, including Gibbons, Ross, and Shanken’s (1989) test, shows that the power of 
Gungor and Luger’s (2013) test increases as the cross section becomes larger.

conclusIon

We have reviewed several finite-sample sign-based tests for testing the orth-
ogonality between random variables in the context of linear and nonlinear regression 
models. The sign tests are very useful when the data at the hands contain few 
observations, are robust against heteroskedasticity of unknown form, and can be 
used in the presence of non-Gaussian errors. These tests are also flexible since 
they do not require the existence of moments for the dependent variable and there 
is no need to specify the nature of the feedback between the dependent variable 
and the current and future values of the independent variable. Finally, we discussed 
several applications where the sign-based tests can be used to test for multi-horizon 
predictability of stock returns and for the market efficiency.
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