
Tous droits réservés © HEC Montréal, 2015 Ce document est protégé par la loi sur le droit d’auteur. L’utilisation des
services d’Érudit (y compris la reproduction) est assujettie à sa politique
d’utilisation que vous pouvez consulter en ligne.
https://apropos.erudit.org/fr/usagers/politique-dutilisation/

Cet article est diffusé et préservé par Érudit.
Érudit est un consortium interuniversitaire sans but lucratif composé de
l’Université de Montréal, l’Université Laval et l’Université du Québec à
Montréal. Il a pour mission la promotion et la valorisation de la recherche.
https://www.erudit.org/fr/

Document généré le 8 sept. 2024 22:26

L'Actualité économique

Bootstrap Tests of Mean-Variance Efficiency with Multiple
Portfolio Groupings
Sermin Gungor et Richard Luger

Volume 91, numéro 1-2, mars–juin 2015

Identification, Simulation and Finite-Sample Inference

URI : https://id.erudit.org/iderudit/1036913ar
DOI : https://doi.org/10.7202/1036913ar

Aller au sommaire du numéro

Éditeur(s)
HEC Montréal

ISSN
0001-771X (imprimé)
1710-3991 (numérique)

Découvrir la revue

Citer cet article
Gungor, S. & Luger, R. (2015). Bootstrap Tests of Mean-Variance Efficiency with
Multiple Portfolio Groupings. L'Actualité économique, 91(1-2), 35–65.
https://doi.org/10.7202/1036913ar

Résumé de l'article
We propose double bootstrap methods to test the mean-variance efficiency
hypothesis when multiple portfolio groupings of the test assets are considered
jointly rather than individually. A direct test of the joint null hypothesis may
not be possible with standard methods when the total number of test assets
grows large relative to the number of available time-series observations, since
the estimate of the disturbance covariance matrix eventually becomes
singular. The suggested residual bootstrap procedures based on combining the
individual group p-values avoid this problem while controlling the overall
significance level. Simulation and empirical results illustrate the usefulness of
the joint mean-variance efficiency tests.

https://apropos.erudit.org/fr/usagers/politique-dutilisation/
https://www.erudit.org/fr/
https://www.erudit.org/fr/
https://www.erudit.org/fr/revues/ae/
https://id.erudit.org/iderudit/1036913ar
https://doi.org/10.7202/1036913ar
https://www.erudit.org/fr/revues/ae/2015-v91-n1-2-ae02507/
https://www.erudit.org/fr/revues/ae/


BOOTSTRAP TESTS OF MEAN-VARIANCE 
EFFICIENCY WITH MULTIPLE  

PORTFOLIO GROUPINGS*

Sermin GUNGOR 
Funds Management and Banking Department 
Bank of Canada 
sgungor@bankofcanada.ca

Richard LUGER 
Département de finance, assurance et immobilier 
Université Laval 
richard.luger@fsa.ulaval.ca

abstract–We propose double bootstrap methods to test the mean-variance efficiency hypothesis 
when multiple portfolio groupings of the test assets are considered jointly rather than indi-
vidually. A direct test of the joint null hypothesis may not be possible with standard methods 
when the total number of test assets grows large relative to the number of available time-series 
observations, since the estimate of the disturbance covariance matrix eventually becomes 
singular. The suggested residual bootstrap procedures based on combining the individual 
group p-values avoid this problem while controlling the overall significance level. Simulation 
and empirical results illustrate the usefulness of the joint mean-variance efficiency tests.

IntroductIon

In the context of mean-variance analysis, a benchmark portfolio of assets is 
said to be efficient with respect to a given set of test assets if it is not possible to 
combine it with the test assets to obtain another portfolio with the same expected 
return as the benchmark portfolio, but a lower variance. With multiple benchmark 
portfolios, the question becomes whether some linear combination of them is 
efficient. The mean-variance efficiency hypothesis is a testable implication of the 
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validity of linear factor asset pricing models, such as the capital asset pricing model 
(CAPM) of Sharpe (1964) and Lintner (1965), or more generally of the arbitrage 
pricing theory of Ross (1976). See Sentana (2009) for a survey of the econometrics 
of mean-variance efficiency tests.

A prominent way to assess the mean-variance efficiency hypothesis is with the 
test procedure of Gibbons, Ross and Shanken (1989) (GRS). This test takes the 
form of either a likelihood ratio or a system-wide F test conducted within a multi-
variate linear regression (MLR) model with as many equations as there are test 
assets in the cross-section. The exact distributional theory for the GRS test rests 
on the assumption that the MLR model disturbances are independent and identically 
distributed (i.i.d.) each period according to a multivariate normal distribution. 
Beaulieu, Dufour and Khalaf (2007) (BDK) extend the GRS test by developing a 
simulation-based procedure that allows for the possibility of non-Gaussian innova-
tions. Another approach that also relaxes the GRS normality assumption is the 
residual bootstrap procedure of Chou and Zhou (2006) (CZ).

Any test procedure based on standard estimates of the MLR disturbance 
covariance matrix (e.g., GRS, BDK, CZ) requires that the size of the cross-section 
be less than the length of the time series in order to avoid singularities and hence 
be computable. A common practice is therefore to use portfolios rather than indi-
vidual securities, whereby the test assets are sorted into portfolios according to 
some empirical characteristic such as the market value of the companies’ equity 
and their book-to-market value. For instance, Gibbons, Ross and Shanken (1989) 
examine beta-sorted portfolios, industry-sorted portfolios and size-sorted portfolios. 
Shanken (1996) argues that creating portfolios also has the advantage of reducing 
the residual variance and allowing the key regression parameters to be estimated 
more precisely.

Lewellen, Nagel and Shanken (2010) suggest further that empirical tests of asset 
pricing models can be improved by expanding the set of test portfolios (beyond the 
commonly employed size and book-to-market portfolios) and using additional portfolios 
sorted by industry, volatility, or factor loadings. They argue that a valid asset pricing 
model should be able to price all portfolios simultaneously. In this paper, we consider 
the problem of testing the mean-variance efficiency hypothesis when multiple portfolio 
sorts are grouped together and considered jointly rather than individually1. Observe 
that attempting a joint GRS, BDK or CZ test by taking all the portfolio groupings and 
stacking them into an MLR model may run into the singularity problem, since the 
expanded cross-section can exceed the length of the available time series. This issue 
will be even more pressing whenever the analysis is performed over short time periods, 
which is typically done to alleviate concerns about parameter stability.

The problem then consists of combining the tests for each portfolio grouping in 
a way that controls the overall level of the procedure. A difficulty in this situation is 

1. For example, portfolios formed on size and book-to-market could be one grouping, while 
industry portfolios could be another.
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that even though the distribution of the individual test statistics might be known 
(e.g., under the GRS normality assumption), their joint distribution across portfolio 
groupings may be unknown or difficult to establish. In order to ensure that the 
overall significance level is no greater than, say, 5 %, a smaller level must be used 
for each individual test. According to the well-known Bonferroni inequality, the 
individual levels should be set to 5 % divided by the number of considered portfolio 
groupings. As this number grows, such Bonferroni-type adjustments can become 
far too conservative and lacking in power; see Savin (1984) for a survey discussion 
of these issues.

Westfall and Young (1993) explain in great detail that bootstrap methods can 
be used to solve multiple testing problems. Following these authors, we extend 
the CZ procedure and propose double bootstrap schemes à la Beran (1987, 1988) 
for controlling the overall significance level of mean-variance efficiency tests 
with multiple portfolio groupings. Specifically, the two methods we propose use 
statistics that combine the individual p-values from each portfolio grouping. The 
first method, which rests on the GRS normality assumption, takes the p-values 
from the marginal F distributions and then treats their combination like any other 
test statistic for the purpose of bootstrapping. The second (and more computa-
tionally expensive) method is entirely non-parametric in that a first level of 
bootstrapping is used to find the individual p-values in addition to the second 
level of bootstrapping for the combination of these p-values. Such double bootstrap 
schemes have been proposed by Godfrey (2005) to deal with multiple diagnostic 
tests in linear regression models; see also MacKinnon (2009) for a survey of 
these methods. Dufour, Khalaf and Voia (2014) propose similar resampling-based 
methods for univariate regression models (with specified disturbance distributions) 
and apply them to serial dependence and predictability tests.

The current paper is organized as follows. In Section 1 we establish the statistical 
framework. We also describe the existing tests for a single portfolio grouping, 
including the Gibbons, Ross and Shanken (1989) and Chou and Zhou (2006) test 
procedures. We then discuss the problem of testing mean-variance efficiency with 
multiple portfolio groupings, and describe the proposed bootstrap methods. In 
Section 2 we illustrate the new tests by first comparing their relative performance 
in a simulation study and then by presenting the results of an empirical application. 
In the last section we offer some concluding remarks.

1. frameWork and test procedures

We consider an investment universe comprising a risk-free asset, K benchmark 
portfolios and an additional set of N risky assets. At time t, the risk-free return is 
denoted r

ft 
, the returns on the benchmark portfolios are stacked in the K x 1 vector 

r
Kt

, and, similarly, the returns on the other risky assets are stacked in the N x 1 
vector r

t  
. Correspondingly, the time-t excess returns on the risky assets are denoted 

by z
Kt

 = r
Kt 

− r
ft
 and z

t
 = r

t   
− r

ft 
.
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Consider the following MLR model: 

zt= α
   
+ βzKt  + et , (1)

where α
   
= (α

1
,…,α

N
)'  is an N x 1 vector of intercepts (or alphas), β is an N x K 

matrix of linear regression coefficients (or betas), and e
t
 is an N x 1 vector of model 

disturbances. These disturbances are such that E [ e
t 
| z

Kt  
] = 0

  
and E [ e

t 
e

t
'
 
| z

Kt  
] = Σ, 

a non-singular covariance matrix. Jobson and Korkie (1982) show that if the usual 
expected return-beta representation E [ z

t 
] = β E[ z

Kt 
] holds, then some linear 

combination of the K benchmark portfolios is on the efficient frontier. Therefore, 
a necessary condition for the efficiency of the K benchmark portfolios with respect 
to the N test assets is H

0 
: α

   
= 0 in the context of model (1). A direct test of H

0
, 

however, may not be possible with standard methods when the size of the cross-sec-
tion, N , is too large relative to the length of the time series, T. Indeed, the extant 
procedures described below to test mean-variance efficiency are based on the 
standard estimate of the covariance matrix of regression disturbances. As  N grows 
relative to a fixed value of T, this matrix estimate eventually becomes singular and 
the usual tests can then no longer be computed.

A common practice in the application of mean-variance efficiency tests is thus 
to base them on portfolio groups in order to reduce the size of the cross-section of 
test assets. Dividing the securities into N

1
 groups (such that N

1 
≤ T

 
− K − 1) solves 

the degrees-of-freedom problem with the original set of N test assets. As Shanken 
(1996) explains, portfolio diversification also has the potential effect of reducing 
the residual variances and increasing the precision with which the MLR alphas 
are estimated2.

1.1 Single Portfolio Grouping

Let z
t,1 

denote the N
1 
x 1 vector of returns obtained from grouping the test assets. 

According to model (1), these returns can be represented as

z
t,1

= α
1   

+ β
1 
z

Kt  
+ e

t,1 
, (2)

where α
1
 and e

t,1
 are both N

1 
x 1 vectors, and β

1
 is an N

1 
x K matrix. The null 

hypothesis of interest corresponding to this grouping then becomes

H
0 
: α

1
 = 0. (3)

Gibbons, Ross and Shanken (1989) propose a multivariate F test of H
0 
in (3). 

Their test assumes that the vectors of disturbance terms e
t,1

,  t = 1,…,T, in (2) are 

2. Shanken (1996) also discusses other motivations for the use of portfolio groupings. In 
particular, some stocks come and go over time and using portfolios allows the use of longer time series 
than would otherwise be possible. Forming portfolios also helps to prevent “survivorship biases,” 
which result from the exclusion of failing stocks and thereby introduce an upward bias on the average 
sample return Kothari et al. (1995). Also, portfolios formed by periodically ranking on some economic 
characteristic may be more likely to have constant betas compared to individual securities.
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i.i.d. according to a multivariate normal distribution each period with mean zero 
and non-singular covariance matrix Σ

1
, conditional on z

K1
,…, z

KT  
.

Under normality, the methods of maximum likelihood and ordinary least 
squares (OLS) yield the same unconstrained estimates of α

1 
and β

1 
: 

α1 = z1 −β1zK ,α β

ββ1 =
t=1

T

∑(zt ,1 − z1)(zKt − zK )'
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ t=1

T

∑(zKt − zK )(zKt − zK )'
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

,

where
 
z1 = T −1

t=1

T

∑ zt ,1  and zK = T −1

t=1

T

∑ zKt . With α̂ 1 and β̂ 1 in hand, the uncon-

strained estimate of the disturbance covariance matrix is found as

Σ1 =
1

T
t=1

T

∑ zt ,1 −α1 −β1zKt( ) zt ,1 −α1 −β1zKt( )' .Σ α αβ β
 

(4)

The GRS test statistic for H
0 
in (3) is

J1 =
(T −N1 −K)

N1

1+ zK
' Ω−1zK

⎡⎣ ⎤⎦
−1
α1

' Σ1
−1α1Ω αα Σ ,

 

(5)

where
 
Ω = T −1

t=1

T

∑ (zKt − zK )(zKt − zK )' .
 
Under the null hypothesis H

0 
, the statistic 

J
1 
follows a central F distribution with N

1
 degrees of freedom in the numerator and 

(T –
 
N

1 
–

 
K) degrees of freedom in the denominator. The statistic in (5) can also be 

written in the form of a likelihood ratio test (Campbell, Lo and MacKinlay, 1997: 
Ch. 5). In either form, the GRS test is feasible only when N

1
 ≤ T

 
–

 
K

 
–

 
1.

Beaulieu et al. (2007) extend the GRS test by developing an exact procedure 
based on likelihood ratios that allows for the possibility of non-Gaussian innovation 
distributions. Their framework assumes that the innovation distribution is either 
known or at least specified up to some unknown nuisance parameters. If normality 
is maintained, the BDK test becomes the Monte Carlo equivalent of the GRS test. 
Indeed, the BDK test procedure is akin to a parametric bootstrap with a finite-sample 
justification. When the assumed distribution involves unknown parameters (e.g., 
Student-t with unknown degrees of freedom), the BDK method proceeds by finding 
the maximal p-value over a confidence set for the intervening nuisance parameters. 
This confidence set is first established by numerically inverting a simulation-based 
goodness-of-fit test for the maintained distribution.

Chou and Zhou (2006) propose to use bootstrap methods to test mean-variance 
efficiency, avoiding the need to specify any distribution at all3. Of course, a non- 
parametric bootstrap is only asymptotically justified, but Chou and Zhou (2006)  
show that it works well even in small samples. The test statistic used in the CZ  

3. Hein and Westfall (2004) propose a similar residual bootstrap procedure to assess the 
significance of economic events for abnormal returns in the context of an MLR model.
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bootstrap procedure is the Wald ratioW1 = α1
' Σ1

−1α1α αΣ , which appears in the numerator 
of the GRS statistic in (5). Let c1 = 1+ zK

' Ω−1zK
⎡⎣ ⎤⎦

−1
(T −N1 −K) / N1Ω1 and observe 

that a bootstrap test based on W
1
 is equivalent to one based on J

1
= c

1 
W

1
, since the term 

c
1 
is constant under a fixed-regressor resampling scheme. Specifically, the CZ residual 

bootstrap procedure for the i.i.d. case considered here proceeds as follows: 

1. Estimate the parameters of the MLR in (2) by OLS to obtain α̂ 
1
, β̂ 1, and 

êt,1 = zt,1 
–

 
α̂  

1 
–

  
β̂ 1 zKt  

for t = 1,…,T. Compute the Wald statistic as W
1
 = α̂ 

1
'
 

Σ̂ 
1
-1 α̂ 

1
.

2. Estimate the MLR under the null hypothesis by setting the vector α1 in (2) 
equal to zero and obtain

β1 =
t=1

T

∑zt ,1zKt
'

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ t=1

T

∑zKtzKt
'

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

β
~ ,

where the tilde is used to distinguish this beta from its unconstrained counter-

part, β̂ 1.

3. For i = 1,…,B1, repeat the following steps: 

(a) Generate bootstrap data according to ezt ,1,i
∗ = β1zKt +εt ,1,i

∗β
~

  for t = 1,…,T,

where e*
t,1, i

 
 is drawn with replacement from {ê

t,1
}{

n̂
t ,1}t=1

T

(b) Apply OLS to the MLR model using the bootstrap data, thereby obtaining

α1,i
∗ = z1,i

∗ −β1,i
∗ zK ,βα

β1,i
∗ =

t=1

T

∑(zt ,1,i
∗ − z1,i

∗ )(zKt − zK )'
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ t=1

T

∑(zKt − zK )(zKt − zK )'
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

,β

Σ1,i
∗ =

1

T
t=1

T

∑ zt ,1,i
∗ −α1,i

∗ −β1,i
∗ zKt( ) zt ,1,i

∗ −α1,i
∗ −β1,i

∗ zKt( )'β βΣ α α ,

where z1,i
∗ = T −1

t=1

T

∑ zt ,1,i
* . Then compute the bootstrap Wald statistic as  

W *
1, i = α 

1
*

,
'
 i Σ 

1
*
, i
-1 α 

1
*
, i  .

The null hypothesis H
0
 in (3) should be rejected when the original statistic 

W
1
 is in the upper tail. Using the simulated statistics W *

1, 1 ,…,W *
1, B1

, the bootstrap 
p-value is then simply

p̂∗ =
1

B1 i=1

B1

∑n [W1,i
∗ > W1] ,
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where II[A] is the indicator function of event A, which is equal to 1 when A occurs 
and 0 otherwise. The decision rule consists of rejecting the null hypothesis when 
p̂*

 is less than the nominal test level.

Observe that the bootstrap procedure uses the H
0
-restricted estimate β 

~
1
 when generating 

the artificial samples. This ensures that the bootstrap data are compatible with the null 
hypothesis. Also notice that the Chou and Zhou (2006) bootstrap method resamples the 
unrestricted residuals ê

1,1
,…,ê

T, 1
. By construction, these residuals have mean zero, thereby 

avoiding the need for centering. There is also an advantage in terms of power to using 
unrestricted rather than restricted residuals (MacKinnon, 2009).

In practical applications of mean-variance efficiency tests, we need to choose 
an appropriate number N

1
 of test assets. It might seem natural to try to use as many 

as possible in order to increase the probability of rejecting H
0
 when it is false. 

Indeed, as the test asset universe expands it becomes more likely that non-zero 
pricing errors will be detected. However, as we have already mentioned, the choice 
of N

1
 is restricted by T in order to keep the estimate of the disturbance covariance 

matrix in (4) from becoming singular, and the choice of T itself is often restricted 
owing to concerns about parameter stability. For instance, it is quite common to 
see studies where T = 60 monthly returns and N

1 
is between 10 and 30.

The effect of increasing the number of test assets on test power is discussed in 
Gibbons et al. (1989), Campbell et al. (1997: 206), Sentana (2009), and Gungor and 
Luger (2013). When N

1 
increases, there are in fact three effects that come into play: 

(i) the increase in the value of J
1
’s non-centrality parameter, which increases power, 

(ii) the increase in the number of degrees of freedom of the numerator, which decreases 
power, and (iii) the decrease in the number of degrees of freedom of the denominator 
due to the additional parameters that need to be estimated, which also decreases 
power. The additional caveat for the CZ resampling scheme is that the N

1 
x N

1
 matrix 

Σ̂  
1
*
, i
 will be singular and W1 

*
, i
 will not be defined with probability approaching 1 as 

N
1
/T becomes large. For example, a bootstrap replication can sample the same 

N
1
-vector e*

t,1, i
 too many times and in this case the rank of Σ̂ *

1, i 
will be deficient.

To illustrate the net effect of increasing N
1
 on the power of the GRS test and 

the CZ bootstrap test, we simulated model (2) with K = 1, where the returns on the 
single factor are random draws from the standard normal distribution. The elements 
of the independent disturbance vector were also drawn from the standard normal 
distribution, thereby ensuring the exactness of the GRS test. The elements of α

1
 

are generated randomly by drawing from a uniform distribution over [– a,a], where 
we consider a = 0.1, 0.2 and 0.3. These values are well within the range of what 
we find with monthly stock returns. We set the sample size as T = 60 and we let 
the number of test assets N

1
 range from 1 to 58.

Figure 1 shows the power of the GRS test (solid line) and the CZ bootstrap test 
computed with B

1
 = 1000 (dashed line) as a function of N

1
, where for any given value 

of N
1
 the higher power curves are associated with a greater range [– a,a]. In line with 

the discussion in Gibbons et al. (1989), this figure clearly shows the power of the 
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GRS test given this specification rising as N
1 
increases up to about one half of T, and 

then decreasing beyond that point. The results in Campbell et al. (1997: Table 5.2) 
show several other alternatives against which the power of the GRS test declines as 
N

1 
increases. It is important to note that the choice of N

1 
and T 

 
is somewhat arbitrary 

in practice, since there are no general results on how to devise an optimal multivariate 
test. Figure 1 also shows that the GRS and CZ tests have similar power when N

1
 is 

between 1 and 5, but as more test assets are included, the power of the CZ bootstrap 
test peaks around N

1 
= 10 and then falls to zero much sooner than the GRS test.

In addition to choosing N
1 
and T, we must also select the assets used in the test 

procedure. A common practice is to group returns according to the ranked value of 
certain characteristics (e.g., industry, beta, size, book-to-market, momentum) that 
are likely to offer a big spread in expected return deviations and boost the chances 
of rejecting the null hypothesis when the benchmark portfolios are not efficient. In 
the next section, we present two methods for testing mean-variance efficiency when 
multiple portfolio groupings are considered4.

4. Expanding the set of test assets beyond the usual size and book-to-market portfolios is in 
fact the first prescription offered by Lewellen, Nagel and Shanken (2010) to improve (cross-sectional) 
asset pricing tests. 

FIGURE 1
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note:  This figure plots the power of the GRS and CZ tests as a function of the number of included test 
assets. The returns are generated from model (2) with normally distributed innovations. The 
sample size is T = 60 and the number of test assets N

1
 ranges from 1 to 58. The tests are performed 

at the nominal 0.05 level and the higher power curves are associated with greater expected return 
deviations.
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1.2 Multiple Portfolio Groupings

Suppose there are G possible ways of dividing the test assets into groups, 

yielding the N
g 
x

 
1 vectors z

t,g
, for g = 1,…,G. These groups could differ in their 

number of included assets and/or selection of assets. By extension of (2), the 
groupings can be represented by the simultaneous equations

z
t,g

 = α
g
 + β

g
 z

Kt
 + e

t,g 
,    g = 1,…,G, (7)

where we now have α
g 
and e

t,g 
as N

g
 x 1 vectors, and β

g
 as an N

g
 x K matrix. Mean-

variance efficiency implies the truth of H
0,g

 : α
g
 = 0, for all g. The joint null 

hypothesis of interest then becomes

H
0
 : The hypotheses H

0,1
,…,H

0,G
 are all true (8)

which we wish to test in a way that keeps under control the overall probability of 
rejecting mean-variance efficiency when it actually holds.

Define the matrices Z
g
 = [z

1g
,…,z

T,g
]', g = 1,…,G, and X = [nT ,ZK ] , where ι

T
 

is a T-vector of ones and Z
K
 = [z

K1
,…,z

KT
]'. The models in (7) can then be written 

in the stacked MLR form: 

Y = XB + U, (9)

where Y = [Z
1
,…,Z

G
]  is a T x (N

1
 + … + N

G
) matrix, X is a T x (K + 1) matrix of 

regressors, and U = [U
1
,…,U

G
] is the T x (N

1
 + … + N

G
) matrix of model disturb-

ances defined with U
g
 = [e1,g  ,…,eT,g 

]', g = 1,…,G. The parameters are collected in 

B = [a,b]', a (K + 1) x (N
1
 + … + N

G
) matrix, where  a = [α1

' ,…,α'
G]' and b = 

[β'
1,…,β'

G]'. The system OLS estimates and residuals are given as usual by

B̂ = (X'X) -1 X'Y,

Û = Y − XB̂ ,

and it is well known that these are identical to what would be obtained if we applied 
OLS to each group separately before stacking. The disturbance covariance matrix 
estimate is computed as

Σ̂ = Û'Û/T,

but this matrix is singular when (N
1
 + … + N

G
) > T – K – 1, meaning that parametric 

methods (like the GRS and BDK tests) cannot be applied to (9) for testing H
0 

directly. So even though non-parametric test procedures are generally less powerful 
than parametric ones, taking a non-parametric route is the only option we have 
available for “large∑Ng , small T ” situations5.

5. This point can also be seen in Affleck-Graves and McDonald (1990), who deal with a large 
number of test assets by using analogs to the GRS statistic computed with alternative covariance matrix 
estimators. Specifically, they consider an estimator based on the maximum entropy method of Theil 
and Laitinen (1980) and another one that restricts the covariance matrix to be diagonal. The distribution 
of the resulting statistics is then obtained via a residual bootstrap method. 
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Let us maintain for the moment the GRS assumption that the disturbance terms 
e

t,g 
,
    
t = 1,…,T, in (7) are i.i.d. according to a multivariate normal distribution each 

period with mean zero and non-singular covariance matrix Σ
g
, conditional on the 

benchmark portfolio excess returns z
K1

,…, z
KT 

. Under this assumption and the joint 
H

0
 in (8), the marginal GRS statistics J

g
,  g = 1,…,G, each follow an F distribution 

with N
g 
degrees of freedom in the numerator and (T – N

g
 – K) degrees of freedom 

in the denominator. Denote the corresponding marginal p-values by 
pg = 1−FNg ,T−Ng−K (Jg ) , where FNg ,T−Ng−K  

is the cumulative distribution function 

of the appropriate null distribution.

Following Dufour et al. (2014), we consider two methods of combining the 
individual p-values. The first one rejects H

0 
when at least one of the individual 

p-values is sufficiently small. Specifically, if we define

p
min

 = min{p
1
,…,p

G
} and S

min
 = 1 – p

min
,

then we reject H
0 
when p

min
 is small, or, equivalently, when S

min
 is large. The intuition 

here is that the null hypothesis should be rejected if at least one of the individual 
p-values is significant. The second combination method we consider is based on 
the product of the individual p-values: 

p× =
g=1

G

∏pg and S× = 1− p×
 

and p× =
g=1

G

∏pg and S× = 1− p×

which may provide more information about departures from H
0 
compared to using 

only the minimum p-value6. To streamline the presentation, we next explain our 
inference methods with S

min
, and then we consider both S

min 
and S

x
 in our simulation 

study and empirical application.

We use bootstrap methods to estimate the distribution of S
min

 under H
0
. Such 

resampling methods are necessary here in order to account for the dependence 
among the p-values. To see why, observe that the individual p-values are such that

p
g 
~ U[0,1] under H

0,g
,

but only for each p-value taken one at a time. So even though the p-values p
1
,…,p

G
 

have identical marginal distributions under H
0
, they need not be independent and 

may in fact have a very complex dependence structure. As Westfall and Young 
(1993) explain, bootstrap methods can be used to account for the correlation among 
the p-values and obtain a joint test of multiple hypotheses. These methods also 
avoid the need for Bonferroni-type adjustments, which quickly become far too 
conservative as G grows. See Godfrey (2005) and MacKinnon (2009) for related 
discussion and applications.

6. We refer the reader to Folks (1984) for more on these and other test combination methods.
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1.2.1 Bootstrap Method I

The first method we propose exploits the Gaussian distributional assumption 
underlying the GRS test7. It should be noted, however, that even though this may 
seem like a stringent assumption, the GRS test is quite robust to typical departures 
from normality (Affleck-Graves and McDonald, 1989). The bootstrap method 
proceeds according to the following steps: 

1. Estimate the parameters of the MLRs in (7) by OLS to obtain α̂
g
,
 
β̂

g
, and 

êt,g
 = z

t,g 
– α̂

g
– β̂

g 
z

K,t , for t = 1,…,T and g = 1,…,G. Compute the GRS statistics as

J
g
 = c

g 
W

g
 = c

g α̂ '
g
 Σ̂ g

-1 α̂
g
,    g = 1,…,G,

where cg = 1+ zK
' Ω−1zK

⎡⎣ ⎤⎦
−1

(T −Ng −K) / NgΩ .

2. Estimate the MLRs under the null hypothesis to obtain  β
~

g
,  g = 1,…,G.

3.  Compute S
min 

= 1 
– p

min
, where p

min  
=  min{p

1
,…,p

G
} with pg = 1−FNg ,T−Ng−K (Jg ).

4. For i = 1,…,B
1
, repeat the following steps: 

(a)  Generate bootstrap data according to zt ,g,i
∗ = βgzKt +εt ,g,i

∗β
~ e , for t = 1,…,T  

and g = 1,…,G, where the time-t collection nεt ,1,i
∗ ,...,εt ,G ,i

∗e e  is drawn with  

replacement from {e
t,1 

,…,e
t,G

}{εt ,1,...,εt ,G}t=1
T .

(b)  For g = 1,…,G, apply OLS to the corresponding MLR model using the 
bootstrap data, thereby obtaining

αg,i
∗ = zg,i

∗ −βg,i
∗ zK ,βα

βg,i
∗ =

t=1

T

∑(zt ,g,i
∗ − zg,i

∗ )(zKt − zK )'
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ t=1

T

∑(zKt − zK )(zKt − zK )'
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

,β

Σg,i
∗ =

1

T
t=1

T

∑ zt ,g,i
∗ αg,i

∗ −βg,i
∗ zKt( ) zt ,g,i

∗ −αg,i
∗ −βg,i

∗ zKt( )'Σ  −
 

Σg,i
∗ =

1

T
t=1

T

∑ zt ,g,i
∗ αg,i

∗ −βg,i
∗ zKt( ) zt ,g,i

∗ −αg,i
∗ −βg,i

∗ zKt( )'α αβ β ,

where zg,i
∗ = T −1

t=1

T

∑ zt ,g,i
* .

 
Then compute the bootstrap GRS statistic as

Jg,i
∗ = cgαg,i

∗' Σg,i
∗−1αg,i

∗α αΣ  
 
and the corresponding p-value pg,i

∗ = 1−FNg ,T−Ng−K (Jg,i
∗ ).

(c) Compute S*
min,i

 = 1 – p*
min,i  

,
 
where

 
 p*

min,i  
= min {p*

1,i
,…,p*

G,i
}. 

7. Method I thus includes the GRS test procedure as a special case (when G = 1).
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The bootstrap p-value of S
min

 is then simply given by

p̂∗ =
1

B1 i=1

B1

∑ P [Smin,i
∗ > Smin ],

with small values suggesting that at least one of the hypotheses appearing in (8) 
may not be true. The formal decision rule is to reject the joint null hypothesis if  
p̂* is less than the nominal significance level. Note that the p-value transformation 
p

g
 of the test statistic J

g 
to a quantile of the U[0,1] distribution corresponds to the 

prepivoting step in Beran (1988).

A very important remark about this method (and the next one) is that the 
bootstrap samples are generated by randomly drawing the entire time-t collection 
εt ,1,i
∗ ,...,εt ,G ,i

∗e e  from {εt ,1,...,εt ,G}t=1
Te e . Stated in terms of the T x (N

1
 + … + N

G
) matrix 

of system residuals associated with the stacked MLR in (9), the bootstrap proceeds 
by drawing entire rows of Û. This kind of block resampling is the key for controlling 
the joint test size, since it preserves the contemporaneous correlation structure 
among the residuals.

1.2.2 Bootstrap Method II

If we believe the MLR model innovations depart markedly from normality, 
then we can hedge against the risk of a misleading inference by bootstrapping the 
individual p-values in addition to bootstrapping their combination. This double 
bootstrap procedure works as follows: 

1. Estimate the parameters of the MLRs in (7) by OLS to obtain α
g 
, β̂

g 
, and 

ê
t,g

 = z
t,g

–
 
α̂

g  
–

 
β̂

g 
z

Kt 
, for t = 1,…,T and g = 1,…,G. Compute the Wald statistics 

as

Wg = αg
' Σg

−1αg , g = 1,...,G.α αΣ

2. Estimate the MLRs under the null hypothesis to obtain β
~

g
,  g = 1,…,G.

3. For i = 1,…,B
1
, repeat the following steps: 

(a)  Generate bootstrap data according to zt ,g,i
∗ = βgzKt +εt ,g,i

∗β
~

e , for t = 1,…,T 

and g = 1,…,G, where the time-t  collection εt ,1,i
∗ ,...,εt ,G ,i

∗e e  is drawn with 

replacement from {εt ,1,...,εt ,G}t=1
Te e .

(b)  For g = 1,…,G, apply OLS to the corresponding MLR model using the 
bootstrap data, thereby obtaining

αg,i
∗ = zg,i

∗ −βg,i
∗ zK ,βα

βg,i
∗ =

t=1

T

∑(zt ,g,i
∗ − zg,i

∗ )(zKt − zK )'
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ t=1

T

∑(zKt − zK )(zKt − zK )'
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

,β
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Σg,i
∗ =

1

T
t=1

T

∑ zt ,g,i
∗ −αg,i

∗ −βg,i
∗ zKt( ) zt ,g,i

∗ −αg,i
∗ −βg,i

∗ zKt( )'Σ α αβ β ,

where zg,i
∗ = T −1

t=1

T

∑ zt ,g,i
* . Then compute the bootstrap Wald statistic as 

Wg,i
∗ = αg,i

∗' Σg,i
∗−1αg,i

∗Σα α .

4. With the simulated statistics Wg,1
∗ ,...,Wg,B1

∗ , compute the first-level bootstrap 
p-values as

p̂g
∗ =

1

B1 i=1

B1

∑n [Wg,i
∗ > Wg ], g = 1,...,G.

5. Compute Ŝ*
min = 1 

– p̂*
min, where p̂*

min = min{p̂*
1,…, p̂*

G}.

6. For  i = 1,…,B
1
, do the following steps: 

(a) For  j = 1,…,B
2
, do the following steps: 

i.  Generate second-level bootstrap data according to zt ,g, j
∗∗ = βgzKt +εt ,g, j

∗∗β
~ e ,  

for t = 1,…,T and g = 1,…,G, where, as before, the time-t collection 

εt ,1, j
∗∗ ,...,εt ,G , j

∗∗ee  is drawn with replacement from {εt ,1,...,εt ,G}t=1
Te e .

ii.  For g = 1,…,G, apply OLS to the corresponding MLR model using the 
second-level bootstrap data, thereby obtaining

αg, j
∗∗ = zg, j

∗∗ −βg, j
∗∗ zK ,α β

βg, j
∗∗ =

t=1

T

∑(zt ,g, j
∗∗ − zg, j

∗∗ )(zKt − zK )'
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ t=1

T

∑(zKt − zK )(zKt − zK )'
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

,β

Σg, j
∗∗ =

1

T
t=1

T

∑ zt ,g, j
∗∗ −αg, j

∗∗ −βg, j
∗∗ zKt( ) zt ,g, j

∗∗ −αg, j
∗∗ −βg, j

∗∗ zKt( )'α αΣ β β ,

where zg, j
∗∗ = T −1

t=1

T

∑ zt ,g, j
∗∗ . Then compute the second-level bootstrap Wald 

statistic as Wg, j
∗∗ = αg, j

∗∗' Σg, j
∗∗−1αg, j

∗∗α αΣ .

(b) With the simulated statistics Wg,1
∗∗ ,...,Wg,B2

∗∗ , compute the second-level 
bootstrap p-values as

p̂g,i
∗∗ =

1

B2 j=1

B2

∑n [Wg, j
∗∗ > Wg,i

∗ ], g = 1,...,G.

(c) Compute  Ŝ
**
min,i 

= 1 – p̂
**
min,i, where  p̂

**
min,i = min{p̂

**
1,i,…,

 p̂
**
G,i}.



48 L’ACTUALITÉ ÉCONOMIQUE

The final test criterion of this double bootstrap method is

p̂∗∗ =
1

B1 i=1

B1

∑n [Ŝmin,i
∗∗ > Ŝmin

∗ ]

which is just the proportion of simulated second-level combination statistics greater 
than  Ŝ

*
min, the first-level combination statistic computed from the actual data. Note 

that here the first- and second-level bootstrap samples are generated the same way, 
so the asymptotic justification of this method is the same as for an ordinary (single) 
bootstrap test (cf. Beran, 1988).

Observe also that the double bootstrap is computationally expensive, since we 
need to calculate a total of G(1 + B

1
 + B

1
B

2
) Wald test statistics. MacKinnon (2009) 

notes that the computational cost of performing a double bootstrap test can be 
substantially reduced by utilizing a stopping rule. Specifically, the replications can 
be stopped following the rules (for double bootstrap tests and confidence intervals) 
developed by Nankervis (2003, 2005) and the same results can be obtained as if 
all bootstrap calculations were used.

2. IllustratIons

We illustrate the usefulness of the proposed bootstrap tests by applying them 
to the CAPM, which is a commonly applied model, in theory and in practice, for 
analyzing the trade-off between risk and expected return. Sharpe (1964) and Lintner 
(1965) show that if investors hold mean-variance efficient portfolios, then, under 
certain additional conditions, the market portfolio will itself be mean-variance 
efficient. The CAPM beta is the regression coefficient of the asset return on the 
single factor and it measures the systematic risk or co-movement with the returns 
on the market portfolio. Accordingly, assets with higher betas should in equilibrium 
offer higher expected returns.

The mean-variance CAPM takes the MLR form in (1) with K = 1 and a broad 
market index typically serves as a proxy for the market portfolio. Here we specify 
the market factor as the excess returns on a value-weighted stock market index of 
all stocks listed on the NYSE, AMEX, and NASDAQ markets. The test assets are 
monthly excess returns on 25 size and book-to-market, 30 industry, 10 momentum, 
and 10 equity-price ratio portfolios (75 portfolios in total) over a 50-year period 
from January 1964 to December 2013 (600 months). Finally, we use the one-month 
U.S. Treasury bill as the risk-free asset when forming excess returns over the sample 
period8. It is also quite common in the empirical finance literature to test asset 
pricing models over subperiods owing to concerns about parameter stability 
(Campbell et al., 1997: Ch. 5). We follow this practice here and also perform the 
mean-variance efficiency tests over 5- and 10-year subperiods.

8. The data are obtained from Ken French’s website at Dartmouth College.
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2.1 Simulation Results

Before presenting the results of the empirical application, we first shed some 
light on the performance of the (CZ and new) bootstrap inference methods using 
the GRS test procedure as the benchmark for comparison purposes.

The artificial data are generated according to the single-factor version of (1) 
where z

Kt
 = z

1t
 is obtained by randomly sampling the actual market factor. We also 

use in the data-generating process the actual estimates, β̂ and Σ̂, obtained from the 
75 test asset portfolios over the full sample period. Specifically, for a given value 
of N, we populate the N x 1 vector β by drawing randomly with replacement the 
elements of β̂ , and the first N x N submatrix of Σ̂ serves as Σ. The model disturbances 
are then generated as et ~ N(0, Σ),  thereby mimicking the cross-sectional covariance 
structure found among the actual sample residuals. In this setting, the GRS pro-
cedure is the uniformly most powerful invariant test (Affleck-Graves and McDonald, 
1990). To examine the effects of non-normalities, we also consider disturbances 
drawn from a multivariate t -distribution with covariance matrix Σ and degrees of 
freedom equal to 20 and then 6. When investigating the relative power of the tests, 
the mispricing values α

1
,…,α

N
 that make up α in (1) are randomly drawn from a 

uniform distribution under two alternative scenarios: (i) α
i 
~ U[–0.30, 0.30] ; and 

(ii) α
i 
~ U[–0.35, 0.35]. We consider sample sizes T = 60, 120, which correspond 

to 5 and 10 years of monthly data, and we vary the number of test assets as  
N = 10, 30, 60, 75.

The application of the new test procedures requires a choice about how to group 
the test assets. This choice obviously has no effect on the level of the tests, but, as 
Figure 1 shows, it matters for their power. The empirical rejection rates are therefore 
reported for several values of G and N

g
 to examine the effects of grouping. At the 

nominal 5 % level, Tables 1-4 report the empirical size and power of the GRS, CZ, 
and new bootstrap (Methods I and II) tests, the latter being performed with the  
S

min
 and S

x 
combination statistics. The simulation design in Table 4 matches our 

empirical application in terms of sample size T, number of test assets N = 75 and 
number of groupings G. The bootstrap methods are implemented with B

1
 = 1000, 

B
2
 = 100 and the empirical rejection rates are based on 1000 replications of each 

data-generating configuration. The main findings of the simulation study can be 
summarized as follows.

1. When the GRS test is applicable, its empirical size is seen to stay close to 
the stated 5 % level, even when the model disturbances follow a t -distribution; 
see Affleck-Graves and McDonald (1989) for further discussion about the 
robustness of the GRS test. The empirical rejection rates of the CZ test 
quickly decline to zero and the test ceases to be applicable as the ratio N/T 
increases, owing to the singularity of the estimated disturbance covariance 
matrix in the bootstrap world. In line with Figure 1, we see the CZ rejection 
rates in Tables 1-3 going to zero under both the null and alternative when 
N/T ≥ 1/2. Observe that there are no CZ test results in Table 4, where N/T 
exceeds 1/2.
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2. The overall rejection rates of the double bootstrap tests depend not only on 
N/T, but also on the number of groupings G. For a fixed value of N/T, the 
empirical size shrinks toward zero as G decreases. Obviously, as G gets 
closer to 1, the new tests behave more like the original CZ test under the null 
and alternative hypotheses. Recall that when G = 1, Methods I and II cor-
respond to the GRS and CZ test procedures, respectively.

3. In order to maximize the power of the bootstrap tests, it generally appears 
that G should be increased as N/T increases. From Tables 1-3 we see that 
when  N/T ≤ 1/4 (Panels A, B and D), we should set G = 1, i.e. perform the 
CZ test. An exception occurs under the heavy-tailed t

6
 distribution in Table 

3, Panel D, where the bootstrap tests with G = 2 do slightly better. But as 
N/T increases, the new tests based on groupings clearly deliver more power 
than the CZ test. Indeed, the best power in Tables 1-3 seems to be with G = 
3 when N/T = 1/2 (Panels C and F), and with G = 6 when N/T = 1 (Panel E). 
This pattern continues in Panels A, C and E of Table 4, where N/T = 1.25, 
and the best power performance occurs with G = 7 (6 groups with 10 portfolios 
each and a group of 15 portfolios).

4. The best bootstrap test power performances (set in bold) compare quite favourably 
to those of the GRS test. From Table 4 we can see that the power of bootstrap 
Methods I and II is on par with that of the GRS procedure, and can even surpass 
it. Indeed, in Panel F when the alternative is α

i 
~ U[–0.35,0.35], the GRS test 

has power of 78 %, while the new bootstrap methods have power attaining 90 % 
and more. Furthermore, when N ≥ T in Panel E of Tables 1-3 and Panels A, C, 
and E of Table 4, the double bootstrap tests are the only ones available.

5. In Tables 1-4, the new bootstrap methods appear to perform somewhat better 
with S

x 
than with S

min
 at the values of G that maximize power. For instance, 

in Panel A of Table 4 under α
i 
~ U[–0.35, 0.35], bootstrap Method I applied 

with  G = 7 delivers power of 55.4 % with  S
x 
, versus 47.4 % with S

min
. The 

S
x 
statistic is also favoured with Method II.

6. Comparing the power performances of the two double bootstrap methods, we 
see that the completely non-parametric one (Method II) is only slightly less 
powerful than Method I, whose first-level p-values rest on the GRS normality 
assumption. A notable exception occurs in Table 4, Panels A, C, and E with 
G = 5, where Method II appears to outperform Method I. As expected, all the 
tests suffer relative power losses as the tails of the disturbance distribution 
become heavier from normal to t

20
 to t

6
, and gain in power as T increases.

7. When the model disturbances deviate from normality (Tables 2 and 3; and 
Table 4, Panels C-F), the underlying GRS p-values used in Method I are only 
approximate. Nevertheless, we see that the bootstrap procedure works remark-
ably well at keeping the test size under control. This finding concurs with 
the robustness results in Affleck-Graves and McDonald (1989), and is in line 
with the theoretical properties of combined p-values established by Dufour, 
Khalaf and Voia (2014) in a parametric bootstrap context.
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TABLE 1

empIrIcal sIze and poWer: normal dIsturbances, N = 10, 30, 60 test assets

Size: α
i
 = 0 Power: α

i
 ~ U[–0.3, 0.3] Power: α

i
 ~ U[–0.35, 0.35]

GRS CZ Method I Method II GRS CZ Method I Method II GRS CZ Method I Method II

G x N
g

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

Panel A: N = 10, T = 60

1 x 10 5.0 3.6 42.3 36.0 53.3 49.0
2 x 5 3.8 4.0 3.5 3.8 29.4 30.0 29.2 29.7 41.5 41.3 41.0 40.0

5 x 2 5.5 5.1 5.1 4.8 19.4 11.0 17.6 10.6 25.7 15.6 24.9 13.4

Panel B: N = 10, T = 120

1 x 10 3.7 3.2 78.4 76.8 88.5 87.4
2 x 5 3.5 3.5 3.7 4.0 66.9 66.4 65.3 64.9 79.9 80.3 78.0 79.6

5 x 2 3.5 4.3 3.5 4.3 44.2 31.1 44.0 25.8 58.6 42.8 56.6 37.0

Panel C: N = 30, T = 60

1 x 30 6.4 0.0 51.8 0.0 70.4 0.2
2 x 15 1.2 1.0 1.4 1.1 32.4 35.8 31.2 34.9 48.0 55.2 46.5 54.9
3 x 10 2.6 2.3 3.1 2.5 39.2 44.6 37.2 43.7 57.9 62.1 54.8 61.3
5 x 6 4.7 3.4 4.6 3.1 34.7 37.0 34.2 34.2 50.8 55.6 48.3 52.7
6 x 5 4.0 3.4 4.2 3.5 34.6 35.5 33.1 32.9 50.3 52.1 47.6 48.4
10 x 3 4.5 4.0 4.9 4.3 26.8 18.9 26.6 18.0 38.2 26.7 36.2 25.1

15 x 2 5.3 5.6 5.0 6.1 23.9 10.2 22.7 11.2 33.4 12.5 31.0 13.7
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TABLE 1 (CONTINUED)

Size: α
i
 = 0 Power: α

i
 ~ U[–0.3, 0.3] Power: α

i
 ~ U[–0.35, 0.35]

GRS CZ Method I Method II GRS CZ Method I Method II GRS CZ Method I Method II

G x N
g

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

Panel D: N = 30, T = 120

1 x 30 4.0 1.5 98.6 95.2 99.4 98.9
2 x 15 3.5 3.1 3.1 2.8 94.9 96.5 93.3 95.5 98.2 99.0 98.0 98.9
3 x 10 4.1 4.3 3.4 3.9 92.4 95.2 91.1 94.3 97.6 99.2 96.9 99.1
5 x 6 4.4 5.3 5.2 4.9 84.8 90.7 83.1 89.1 95.0 97.8 93.9 96.9
6 x 5 4.5 5.2 5.0 5.1 82.7 88.8 80.7 85.8 93.8 96.8 92.5 95.5
10 x 3 5.3 5.5 4.8 4.9 70.5 49.2 66.7 47.9 85.9 56.1 83.5 54.3

15 x 2 5.3 5.3 4.8 5.1 62.2 19.1 58.1 15.8 77.4 19.7 73.5 16.7

Panel E: N = 60, T = 60

1 x 60 na na na na na na
3 x 20 0.7 0.2 0.7 0.3 11.0 9.7 10.5 8.9 19.9 20.1 21.2 20.8
5 x 12 1.3 0.9 1.6 0.8 26.9 29.1 26.8 28.1 43.2 47.8 41.8 44.5
6 x 10 2.7 1.3 2.8 1.4 26.5 29.7 25.9 28.1 44.5 49.7 41.8 45.3
10 x 6 3.4 2.8 3.7 3.1 29.2 23.9 27.9 23.7 41.5 36.7 39.0 34.4

15 x 4 4.3 4.8 3.8 4.2 25.6 13.4 22.3 11.5 36.6 14.8 33.6 13.1
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TABLE 1 (CONTINUED)

Size: α
i
 = 0 Power: α

i
 ~ U[–0.3, 0.3] Power: α

i
 ~ U[–0.35, 0.35]

GRS CZ Method I Method II GRS CZ Method I Method II GRS CZ Method I Method II

G x N
g

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

Panel F: N = 60, T = 120

1 x 60 4.2 0.0 98.8 2.2 99.9 9.4
2 x 30 0.8 1.0 1.7 1.1 94.5 95.3 93.4 93.4 98.8 99.7 98.7 99.3
3 x 20 2.9 1.6 2.9 1.7 96.1 97.9 95.0 96.6 99.5 99.8 99.1 99.7
5 x 12 3.0 3.3 3.0 3.0 92.7 97.2 92.3 95.9 99.6 99.9 98.7 99.4
6 x 10 3.5 2.9 3.6 2.9 92.0 96.6 90.5 95.0 98.0 99.8 98.0 99.4
10 x 6 3.9 2.8 3.6 3.2 82.5 57.7 79.3 62.6 94.7 60.5 93.8 65.8

15 x 4 4.7 5.0 4.7 5.7 73.0 17.7 69.5 18.6 86.3 17.7 83.3 18.9

note:  This table reports the empirical size and power (in percentages) of the GRS, CZ, and the proposed (bootstrap methods I and II) tests with a total of N = 10, 30, 
60 test assets over T = 60, 120 time periods. The nominal level is 5 % and the results are based on 1000 replications. The entries in bold indicate the portfolio 
groupings that tend to maximize the power of the bootstrap tests and the abbreviation “na” stands for not applicable.
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TABLE 2

empIrIcal sIze and poWer: t
20

 dIsturbances, N = 10, 30, 60 test assets

Size: α
i
 = 0 Power: α

i
 ~ U[–0.3, 0.3] Power: α

i
 ~ U[–0.35, 0.35]

GRS CZ Method I Method II GRS CZ Method I Method II GRS CZ Method I Method II

G x N
g

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

Panel A: N = 10, T = 60

1 x 10 4.2 3.2 37.7 30.2 51.8 43.7
2 x 5 4.7 3.7 4.9 3.8 29.1 27.3 28.3 26.4 40.1 37.6 37.5 36.7

5 x 2 4.7 4.6 4.6 4.0 19.7 11.3 18.7 10.5 25.6 14.4 24.5 13.9

Panel B: N = 10, T = 120

1 x 10 5.0 4.8 76.4 74.6 86.7 85.6
2 x 5 4.6 4.6 5.0 4.7 64.2 63.4 62.9 62.6 76.1 76.4 75.0 75.0

5 x 2 4.7 4.5 4.8 4.5 42.5 27.7 40.9 24.2 54.6 39.2 52.9 34.3

Panel C: N = 30, T = 60

1 x 30 4.9 0.0 53.8 0.1 69.2 0.1
2 x 15 1.5 0.7 1.4 1.2 29.1 33.6 28.1 32.0 45.2 50.2 43.0 50.5
3 x 10 2.9 1.9 2.7 2.1 36.0 41.9 33.2 39.4 51.1 59.7 47.2 58.4
5 x 6 4.0 3.3 4.1 3.2 32.7 33.7 30.4 33.1 46.6 52.6 45.9 50.1
6 x 5 4.8 4.2 4.7 4.0 31.8 32.8 31.9 31.3 47.3 48.0 44.6 45.9
10 x 3 4.7 4.6 5.1 4.7 25.4 16.7 26.7 18.9 36.0 23.4 36.1 25.4

15 x 2 4.2 4.2 4.3 5.7 21.9 9.4 21.7 11.5 31.1 11.1 29.2 13.5
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TABLE 2 (CONTINUED)

Size: α
i
 = 0 Power: α

i
 ~ U[–0.3, 0.3] Power: α

i
 ~ U[–0.35, 0.35]

GRS CZ Method I Method II GRS CZ Method I Method II GRS CZ Method I Method II

G x N
g

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

Panel D: N = 30, T = 120

1 x 30 4.6 1.1 98.4 93.8 99.8 98.7
2 x15 3.7 2.9 3.4 2.8 91.2 94.5 89.3 93.8 98.1 99.3 97.4 99.0
3 x10 3.9 3.6 3.5 3.2 89.0 93.9 87.2 93.0 96.5 99.1 95.8 98.8
5 x 6 4.7 4.6 4.3 4.4 81.9 86.8 78.6 85.3 92.5 95.9 91.6 95.0
6 x 5 4.9 4.5 4.1 3.9 77.7 83.4 74.6 80.7 91.6 94.7 89.8 93.0
10 x 3 5.1 5.3 4.9 5.0 62.2 44.4 59.3 43.4 80.1 53.2 76.2 51.2

15 x 2 4.7 4.2 5.2 5.3 55.2 16.4 52.7 17.3 70.8 17.2 68.9 18.3

Panel E: N = 60, T = 60

1 x 60 na na na na na na
3 x 20 0.2 0.0 0.1 0.0 6.5 5.6 7.1 5.0 14.3 14.4 14.3 14.7
5 x 12 1.5 0.6 1.5 0.7 20.7 20.3 21.0 20.6 37.5 40.0 35.5 36.6
6 x 10 1.6 1.1 2.2 1.0 23.5 23.2 23.6 23.0 39.1 40.9 37.5 39.9
10 x 6 2.9 3.4 3.1 2.2 23.0 18.0 21.3 18.8 35.6 27.1 34.3 28.8

15 x 4 3.5 3.7 3.6 5.1 20.6 11.2 20.8 13.4 30.7 13.3 28.4 15.1
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TABLE 2 (CONTINUED)

Size: α
i
 = 0 Power: α

i
 ~ U[–0.3, 0.3] Power: α

i
 ~ U[–0.35, 0.35]

GRS CZ Method I Method II GRS CZ Method I Method II GRS CZ Method I Method II

G x N
g

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

Panel F: N = 60, T = 120

1 x 60 4.7 0.0 96.3 0.7 99.4 3.9
2 x 30 0.4 0.4 0.4 0.3 87.9 89.9 86.6 88.1 96.9 98.0 96.1 97.0
3 x 20 1.3 1.1 1.9 1.3 91.3 94.0 89.6 93.0 97.9 98.9 97.8 98.8
5 x 12 4.1 1.7 4.2 2.0 88.7 92.7 86.7 91.1 97.1 99.0 96.9 98.5
6 x 10 3.8 2.3 3.8 2.5 85.2 92.3 85.1 90.4 96.0 98.5 94.4 97.4
10 x 6 4.8 4.4 77.7 55.8 77.7 55.8 74.0 59.8 91.3 60.5 89.0 65.9

15 x 4 5.8 5.1 6.0 5.6 62.6 18.0 60.6 18.6 81.2 18.3 78.4 19.1

note:  This table reports the empirical size and power (in percentages) of the GRS, CZ, and the proposed (bootstrap methods I and II) tests with a total of N = 10, 30, 
60 test assets over T = 60, 120 time periods. The nominal level is 5 % and the results are based on 1000 replications. The entries in bold indicate the portfolio 
groupings that tend to maximize the power of the bootstrap tests and the abbreviation  “na” stands for not applicable.
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TABLE 3

empIrIcal sIze and poWer: t
6
 dIsturbances, N = 10, 30, 60 test assets

Size: α
i
 = 0 Power: α

i
 ~ U[–0.3, 0.3] Power: α

i
 ~ U[–0.35, 0.35]

GRS CZ Method I Method II GRS CZ Method I Method II GRS CZ Method I Method II

G x N
g

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

Panel A: N = 10, T = 60

1 x 10 4.5 2.4 30.2 21.8 41.3 29.2
2 x 5 3.8 4.2 3.4 3.5 20.2 18.5 19.6 19.0 28.5 28.1 28.5 26.6

5 x 2 4.7 5.3 4.0 5.3 16.2 10.3 16.5 10.1 22.5 13.5 21.1 13.4

Panel B: N = 10, T = 120

1 x 10 5.9 4.6 62.8 60.2 77.1 73.7
2 x 5 5.5 4.8 4.8 4.8 48.9 48.9 48.6 48.2 64.0 62.2 61.4 61.7

5 x 2 3.7 3.7 4.0 3.6 29.1 18.6 27.6 15.9 38.7 27.5 37.4 22.6

Panel C: N = 30, T = 60

1 x 30 4.7 0.0 46.2 0.0 61.5 0.0
2 x 15 0.5 0.5 0.5 0.3 13.6 15.4 13.1 14.0 24.4 28.5 23.3 26.0
3 x 10 1.4 1.3 1.5 1.5 20.5 22.8 21.2 22.4 32.8 36.2 31.6 35.7
5 x 6 2.5 2.1 3.2 2.7 20.1 19.7 21.6 19.9 30.0 31.3 29.1 28.8
6 x 5 2.3 2.4 2.8 2.7 20.2 18.9 18.6 18.2 29.5 30.0 28.9 28.2
10 x 3 3.5 3.4 3.5 3.6 16.9 12.5 16.6 12.0 23.9 16.6 23.3 15.7

15 x 2 4.4 3.9 4.7 4.7 14.0 8.5 14.3 9.0 20.9 9.9 20.2 10.5
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TABLE 3 (CONTINUED)

Size: α
i
 = 0 Power: α

i
 ~ U[–0.3, 0.3] Power: α

i
 ~ U[–0.35, 0.35]

GRS CZ Method I Method II GRS CZ Method I Method II GRS CZ Method I Method II

G x N
g

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

Panel D: N = 30, T = 120

1 x 30 4.0 0.4 95.2 78.5 99.3 92.8
2 x 15 1.8 1.7 2.0 1.8 81.2 86.0 78.1 84.4 93.4 95.5 91.4 94.2
3 x 10 2.6 2.6 2.9 2.4 78.4 84.3 75.7 82.0 91.5 94.6 90.1 94.0
5 x 6 3.8 3.9 3.8 3.9 68.5 73.9 66.4 69.3 84.1 88.7 80.9 86.0
6 x 5 3.6 4.3 3.1 4.1 64.9 69.5 62.2 65.7 80.5 86.9 79.7 84.2
10 x 3 4.0 4.4 3.8 4.9 49.5 34.2 48.0 35.6 67.4 45.3 63.7 45.8

15 x 2 4.7 4.7 4.7 6.3 41.7 14.5 40.4 17.0 58.0 16.1 55.3 18.7

Panel E: N = 60, T = 60

1 x 60 na na na na na na
3 x 2 0.0 0.0 0.0 0.0 3.4 1.9 3.4 2.2 7.9 5.2 7.0 6.0
5 x 12 0.6 0.6 1.1 0.7 13.1 12.4 14.0 12.8 22.8 22.7 22.1 22.6
6 x 10 1.2 0.7 1.1 0.7 15.4 14.8 15.7 13.8 24.3 24.1 24.2 23.4
10 x 6 2.8 1.9 2.8 2.0 18.5 11.6 18.2 14.5 27.7 17.5 25.6 20.5

15 x 4 3.5 3.9 3.6 4.7 16.4 8.5 17.0 10.7 24.0 9.9 23.3 13.1



59
B

O
O

T
ST

R
A

P T
E

ST
S O

F M
E

A
N

-V
A

R
IA

N
C

E
 E

FFIC
IE

N
C

Y
 W

IT
H

 M
U

LT
IPL

E
...

TABLE 3 (CONTINUED)

Size: α
i
 = 0 Power: α

i
 ~ U[–0.3, 0.3] Power: α

i
 ~ U[–0.35, 0.35]

GRS CZ Method I Method II GRS CZ Method I Method II GRS CZ Method I Method II

G x N
g

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

Panel F: N = 60, T = 120

1 x 60 5.9 0.0 87.7 0.1 90.8 0.6
2 x 30 0.0 0.0 0.3 0.2 67.6 68.2 66.0 66.4 87.5 87.1 86.0 86.0
3 x 20 0.7 0.9 0.9 0.9 75.0 78.0 72.3 74.7 90.4 91.5 88.4 90.0
5 x 12 2.3 1.9 2.3 1.9 71.6 77.4 70.8 74.1 89.0 91.3 27.3 89.2
6 x 10 2.8 2.3 3.1 2.9 69.2 74.6 68.0 71.7 84.8 89.6 84.5 86.6
10 x 6 3.9 3.9 3.9 3.9 56.0 42.0 53.1 45.4 76.1 50.8 72.2 56.4

15 x 4 3.8 4.7 3.9 4.0 45.9 15.5 44.2 15.0 65.6 16.6 61.0 16.1

note:  This table reports the empirical size and power (in percentages) of the GRS, CZ, and the proposed (bootstrap methods I and II) tests with a total of N = 10, 30, 
60 test assets over T = 60, 120 time periods. The nominal level is 5 % and the results are based on 1000 replications. The entries in bold indicate the portfolio 
groupings that tend to maximize the power of the bootstrap tests and the abbreviation “na” stands for not applicable.
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TABLE 4

empIrIcal sIze and poWer: N = 75 test assets

Size: α
i
 = 0 Power: α

i
 ~ U[–0.3, 0.3] Power: α

i
 ~ U[–0.35, 0.35]

GRS CZ Method I Method II GRS CZ Method I Method II GRS CZ Method I Method II

G S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

Panel A: normal disturbances, T = 60

1 na na na na na na
3 0.0 0.0 0.0 0.0 1.3 0.8 1.3 0.9 3.4 3.1 3.4 3.0
4 0.2 0.2 0.2 0.2 11.9 11.9 12.5 12.7 23.0 27.5 23.3 26.3
5 0.2 0.2 1.4 0.8 7.8 13.0 21.9 20.5 16.0 28.9 33.6 36.2

7 1.4 1.3 2.4 2.0 29.3 34.2 28.5 31.2 47.4 55.4 43.7 52.1

Panel B: normal disturbances, T = 120

1 3.7 na 98.2 na 100.0 na
3 1.9 1.7 2.1 2.5 95.8 98.2 95.2 97.6 99.7 100.0 99.2 100.0
4 2.9 2.6 2.9 3.2 96.2 98.7 95.2 98.4 99.9 99.9 99.8 99.8
5 2.9 3.0 3.6 3.2 95.0 98.0 93.4 96.5 99.4 100.0 98.8 99.9

7 5.1 4.3 5.0 4.5 94.9 97.8 95.5 92.5 99.0 99.9 98.5 99.4

Panel C: t
20

 disturbances, T = 60

1 na na na na na na
3 0.0 0.0 0.0 0.0 0.5 0.5 0.5 0.4 1.5 2.1 1.5 1.5
4 0.1 0.1 0.6 0.2 7.9 8.3 9.2 9.2 16.1 19.1 18.8 20.9
5 0.1 0.1 2.0 0.5 4.9 9.1 16.6 15.6 9.3 20.9 26.9 27.6

7 1.9 0.9 1.9 1.2 23.4 26.2 23.1 24.7 37.9 43.6 36.3 41.6
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TABLE 4 (CONTINUED)

Size: α
i
 = 0 Power: α

i
 ~ U[–0.3, 0.3] Power: α

i
 ~ U[–0.35, 0.35]

GRS CZ Method I Method II GRS CZ Method I Method II GRS CZ Method I Method II

G S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

S
min

S
x

Panel D: t
20

 disturbances, T = 120

1 5.1 na 97.3 na 99.5 na
3 1.4 0.7 1.5 1.2 91.3 96.6 89.0 94.5 98.8 99.3 97.6 99.1
4 2.2 1.4 2.1 1.5 93.9 97.3 92.5 96.0 98.7 99.6 97.7 99.3
5 2.8 2.1 3.3 2.2 90.1 95.1 88.7 93.0 98.0 99.3 97.2 98.8

7 4.2 2.6 4.6 2.5 88.4 95.4 86.1 93.0 97.4 99.3 95.8 97.8

Panel E: t
6
 disturbances, T = 60

1 na na na na na na
3 0.0 0.0 0.0 0.0 0.0 0.2 0.3 0.0 0.3 0.7 0.8 0.2
4 0.1 0.1 0.1 0.1 2.4 2.8 3.8 2.9 6.7 6.8 7.2 7.3
5 0.2 1.0 0.2 0.0 1.4 3.4 9.1 5.7 3.5 8.8 15.0 11.9

7 0.8 0.9 1.4 0.9 12.4 12.9 15.1 12.2 21.3 22.9 21.9 22.2

Panel F: t
6
 disturbances, T = 120

1 7.5 na 76.5 na 78.1 na
3 0.9 0.6 0.6 0.6 73.3 77.1 70.8 74.9 90.2 93.0 87.9 90.9
4 2.0 1.4 1.6 1.2 76.5 81.8 73.6 79.0 92.3 94.4 89.8 93.8
5 2.0 1.3 2.6 1.5 71.5 79.4 71.2 76.3 90.2 94.0 87.6 91.9

7 3.9 2.0 3.2 2.2 69.5 78.8 67.5 76.3 87.3 91.9 85.2 91.6

note:  This table reports the empirical size and power (in percentages) of the GRS, CZ, and the proposed (bootstrap methods I and II) tests with a total of N = 75 test assets 
over T = 60; 120 time periods. The number of portfolio groupings is: (i) G = 1 (1 group of 75 portfolios); (ii) G = 3 groups of 25 portfolios each; (iii) G = 4 (3 groups 
of 20 portfolios and a group of 15 portfolios); (iv) G = 5 (2 groups of 10 portfolios, 2 groups of 15 portfolios, and a group of 25 portfolios); and (v) G = 7 (6 groups 
of 10 portfolios and a group of 15 portfolios). The nominal level is 5 % and the results are based on 1000 replications. The entries in bold indicate the portfolio 
groupings that tend to maximize the power of the bootstrap tests and the abbreviation “na” stands for not applicable.
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2.2 Empirical Results

The results of the empirical application are reported in Table 5, where the entries 
are the p-values of the mean-variance efficiency tests performed with the N = 75 test 
asset portfolios over the full 50-year sample period, as well as 5-and 10-year sub-
periods. The entries set in bold represent cases of significance at the 5 % level. 
Observe that the GRS and CZ tests are not computable with five years of monthly 
data, since N = 75 > T = 60. The CZ test remains “na” (not applicable) even with 
T = 120 in the 10-year subperiods due to the singularity problem. We apply the new 
bootstrap methods with four different portfolio groupings: (i) G = 7 (6 groups of 10 
portfolios and a group of 15 portfolios); (ii) G = 5 (2 groups of 10 portfolios, 2 groups 
of 15 portfolios, and a group of 25 portfolios); (iii) G = 4 (3 groups of 20 portfolios 
and a group of 15 portfolios); and (iv) G = 3 groups of 25 portfolios each.

For the 50-year period, the implications of the CAPM are strongly rejected by 
all the tests with p-values of no more than 0.02. In the 5-year subperiods, the new 
bootstrap tests indicate, for the most part, non-rejections of the mean-variance 
efficiency hypothesis. We also see some disagreements among the bootstrap tests. 
For instance, during the period 1/94-1/98, the decision as to whether to reject the 
null depends on the portfolio grouping. In light of the power results in Tables 1-4, 
we would naturally be inclined to agree with the rejections suggested by the G = 7 
groups, since  N/T = 1.25 in this case. Over the 10-year subperiods, the GRS and 
bootstrap tests agree on far more rejections of the null hypothesis at the conven-
tional significance level. These results suggest that the CAPM generally finds 
more support over shorter periods of time and tends to be incompatible with the 
data as the time span lengthens. Note that the wild fluctuation in bootstrap p-values 
already revealed by the 5-year subperiods is suggestive of temporal instabilities in 
the CAPM representation of expected returns.

conclusIon

In this paper we have described how double bootstrap methods can be used to 
test the mean-variance efficiency hypothesis in the presence of multiple portfolio 
groupings. Under the null hypothesis, the MLR model intercepts should be zero 
no matter how the test assets are divided into groups. There are two ways we could 
test these joint restrictions. First, we may stack the portfolio groups into an MLR 
model with, say, G x N

g
 equations and proceed either with the F test of Gibbons et 

al. (1989) or the residual bootstrap method of Chou and Zhou (2006). The short-
coming of this “testing by stacking” approach is that the multivariate GRS and CZ 
tests may lose all their power or may not even be computable as  G x N

g
 becomes 

large relative to T. This problem can be clearly seen in Figure 1. In comparison to 
the unconditional GRS test, the singularity problem appears much sooner in the 
conditional CZ bootstrap world.

Instead of testing by stacking, we proposed a “divide and conquer” approach, 
which proceeds by bootstrapping combinations of the individual p-values associated 
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TABLE 5

mean-varIance effIcIency test results

GRS CZ Method I Method II

S
min

S
x

S
min

S
x

G = 7 5 4 3 7 5 4 3 7 5 4 3 7 5 4 3

50-year period

1/64–12/13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01
5-year subperiods

1/64–12/68 na na 0.07 0.26 0.17 0.42 0.06 0.09 0.13 0.26 0.12 0.16 0.10 0.42 0.05 0.09 0.11 0.21
1/69–12/73 na na 0.25 0.34 0.52 0.55 0.17 0.27 0.51 0.43 0.28 0.15 0.60 0.61 0.17 0.20 0.51 0.49
1/74–12/78 na na 0.41 0.53 0.67 0.76 0.27 0.29 0.62 0.67 0.37 0.39 0.76 0.82 0.27 0.22 0.62 0.70
1/79–12/83 na na 0.47 0.59 0.65 0.75 0.50 0.44 0.53 0.64 0.55 0.44 0.68 0.77 0.49 0.40 0.57 0.68
1/84–12/88 na na 0.00 0.03 0.03 0.17 0.00 0.01 0.00 0.14 0.02 0.01 0.02 0.13 0.02 0.05 0.04 0.09
1/89–12/93 na na 0.09 0.31 0.14 0.49 0.15 0.30 0.14 0.43 0.15 0.18 0.19 0.49 0.24 0.42 0.22 0.45
1/94–12/98 na na 0.00 0.13 0.02 0.25 0.05 0.08 0.07 0.15 0.01 0.24 0.02 0.21 0.03 0.05 0.12 0.14
1/99–12/03 na na 0.12 0.37 0.38 0.48 0.31 0.45 0.47 0.65 0.07 0.56 0.44 0.63 0.34 0.53 0.50 0.71
1/04–12/08 na na 0.07 0.37 0.31 0.49 0.06 0.26 0.23 0.53 0.04 0.21 0.23 0.46 0.04 0.21 0.20 0.53
1/09–12/13 na na 0.18 0.50 0.38 0.65 0.11 0.39 0.37 0.59 0.16 0.56 0.35 0.48 0.13 0.35 0.32 0.38

10-year subperiods

1/64–12/73 0.02 na 0.02 0.01 0.07 0.01 0.00 0.01 0.02 0.00 0.07 0.04 0.06 0.03 0.02 0.02 0.02 0.02
1/74–12/83 0.11 na 0.09 0.10 0.29 0.20 0.06 0.07 0.14 0.23 0.09 0.12 0.25 0.19 0.04 0.08 0.10 0.21
1/84–12/93 0.00 na 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01
1/94–12/03 0.00 na 0.00 0.01 0.00 0.01 0.03 0.03 0.01 0.04 0.01 0.02 0.01 0.03 0.03 0.04 0.04 0.07
1/04–12/13 0.01 na 0.20 0.06 0.18 0.08 0.07 0.13 0.11 0.04 0.22 0.11 0.10 0.07 0.07 0.15 0.13 0.02

note:  The table entries are the p-values of the GRS, CZ, and the proposed (bootstrap methods I and II) tests. The test assets comprise 25 size and book-to-market, 30 industry, 
10 momentum, and 10 earnings-price ratio portfolios. The proposed tests are applied to these N = 75 portfolios by dividing them into G = 7, 5, 4, 3 portfolio groupings. 
The market portfolio return is the value-weighted return on NYSE, AMEX, and NASDAQ stocks and the risk-free rate is the 1-month Treasury bill rate. The entries 
set in bold indicate signicant cases at the 5 % level and the abbreviation “na” stands for not applicable.
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with each portfolio grouping. The individual p-values may be obtained from the 
marginal F distributions, if we assume that the MLR disturbances are (not too far 
from) normally distributed. We showed how these p-values can be combined (using 
either the minimum p-value or their product) into a single statistic, which is then 
treated like any other statistic for the purpose of bootstrapping. The second method 
we suggested uses a first round of bootstrapping to find the individual p-values in 
addition to the second layer of bootstrap replications used to get the p-value of the 
combined statistic. Of course, this second method is computationally more demanding 
than the first one, but it offers protection in situations where the marginal GRS 
p-values may be grossly incorrect. These double bootstrap methods account for the 
possibly complex dependence structure among the p-values and control the probability 
of rejecting the joint null hypothesis when mean-variance efficiency actually holds.
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