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SELF-SIMILARITY AND COMPOSITIONAL 
STRATEGIES IN THE MUSIC OF MILTON 
BABBITT 
John Cuciurean1 

There would seem to be a justifiable expectation that composition in the 
twelve-tone system would employ explicitly formalistic procedures to a 
greater extent than triadic composition, not only because of the closed, 
symmetrical nature of the pre-compositional materials of the system, and the 
fact that the unit of definition (the set) defines a unique set of relationships 
for each work, but, above all, because of the lack, in the twelve-tone system, 
of the procedures of functional harmony. ... Thus, instead of a formalistic 
result, twelve-tone composition would seem to require a predetermined 
formalistic means.2 (Milton Babbitt, 1946) 

The preceding quotation, taken from the fifth section of his doctoral disserta­
tion, reveals Babbitt's philosophy for formal implications of set structure in 
twelve-tone music. In the ensuing forty pages, the thirty-year-old composer 
intuitively described a compositional approach to large-scale form that would 
guide his musical thought for the next half century. Babbitt's first works to 
incorporate the compositional strategies outlined in his dissertation were 
entitled Three Compositions for Piano (1947), Composition for Four Instru­
ments (1948), Composition for Twelve Instruments (1948/revised 1954), and 
Composition for Viola (1950). In view of Babbitt's attitude towards how 
mathematics effects twelve-tone procedures, the term "composition" in the 
titles of these early works probably is meant to suggest its algebraic meaning, 
that is, as one of the fundamental concepts of group theory.3 

1A version of this paper was presented at the Canadian University Music Society's annual meeting 
on 31 May 1996 at Brock University, St. Catharines, Ontario, Canada. I would like to convey my 
appreciation to Martha Hyde, Jonathan Kochavi, Catherine Nolan, and Andrew Mead for reading through 
earlier drafts of this paper and providing numerous insightful comments and helpful suggestions. 

2Milton Babbitt, "The Function of Set Structure in the Twelve-Tone System" (Ph.D. diss., 
Princeton University, 1946/1992), 153-54. 

3Since these first works, Babbitt has used "composition" in the titles of three additional works: 
Composition for Tenor and Six Instruments (1960); Composition for Synthesizer (1961); and Composi­
tion for Guitar (1984). Always quick with a pun, Babbitt's titles frequently evoke multiple meanings 
which often have humorous associations. For instance, Semi-simple Variations (1956), Sextets (1966) 
and The Joy of More Sextets (1986) both for violin and piano, My Complements to Roger (1978), About 
Time (1982), Four Play for four players (1984), It Takes Twelve to Tango (1984), Whirled Series (1987), 
or Around the Horn for solo horn (1993) to cite but a handful. The multiplicity of meaning inherent in 
his titles is carried over into his compositional approach. 
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In a number of published interviews, Babbitt, who presents himself as a 
self-confessed maximalist, describes his aesthetic belief that just as in tonal 
music, every musical event in post-tonal music should have multiple functions. 
Beginning with his early works, Babbitt's compositional strategies reveal rich 
and complex formal procedures, yet his theoretical writings on serial music are 
frequently elliptical and fail to reveal a clear foundation for investigating the 
deeper structural levels that form his music. On the other hand, the analyses of 
individual pieces by scholars such as Joseph Dubiel, William Lake, David 
Lewin, Andrew Mead, Robert Morris and Brian Alegant, and John Peel and 
Cheryl Cramer have gone far towards establishing a foundation for an informed 
theory of deep-level structure.4 These analyses as a group provide a basis for 
this paper's topic, which is to explore in Babbitt's music the relationship 
between the group properties of set structure and implied musical form at 
deeper structural levels. 

In "Twelve-Tone Invariants as Compositional Determinants," Babbitt out­
lines the mathematical group properties of the four transformational operators 
P, I, R, RI.5 I would like to review the concepts of group theory that are 
pertinent to my paper before discussing Babbitt's music. My reasons for this 
will become clear during the course of my discussion. (For a more detailed 
summary of my notational conventions, including the formal definitions of 
group theory and analytic terminology used throughout the essay, please refer 
to the appendix at the end of this article.) 

Briefly, a mathematical group consists of a non-empty set of abstract 
objects, and a binary operator defined on the set of objects which have four 
properties: closure, associativity, identity, and inverse. Our usual model of 
pitch-class space (henceforth, pc space) is a cyclic group Z12 which consists of 
the set of the integers {0, 1,..., 11} together with the binary operation of mod 
12 addition. The direct product of the dihedral group D2, which is comprised 
of the four classical serial operators {T, I, R, RI}, and the cyclic group Z12 
which models pc space produces the forty-eight canonical operators — a direct 
product group which yields a homomorphic image of Z12xD2. (See definitions 
2, 3, and 4 in the appendix.) 

The parallel relationship shared between the structural characteristics of a 
parent group and one of its semi-groups is the essence of "self-similarity." The 

4 Joseph Dubiel, "Three Essays on Milton Babbitt - Part One: Introduction, Thick Array of Depth 
Immeasurable," Perspectives of New Music 28, no. 2 (1990): 216-61; William Lake, 'The Architecture 
of a Superarray Composition: Milton Babbitt's String Quartet No.5" Perspectives of New Music 24, 
no. 2 (1986): 88-111; David Lewin, "Generalized Interval Systems for Babbitt's Lists and for Schoen-
berg's String Trio," Music Theory Spectrum 17, no. 1 (1995): 81-118; Andrew Mead, "Detail and the 
Array in Milton Babbitt's My Complements to Roger" Music Theory Spectrum 5 (1983): 89-109; 
Andrew Mead, "Recent Developments in the Music of Milton Babbitt," Musical Quarterly 70, no. 3 
(1984): 310-31; Andrew Mead, An Introduction to the Music of Milton Babbitt (NJ: Princeton 
University Press, 1994); Robert Morris and Brian Alegant, "The Even Partitions in Twelve-Tone 
Music," Music Theory Spectrum 10 (1988): 74-101; and John Peel and Cheryl Cramer, "Correspon­
dences and Associations in Milton Babbitt's Reflections" Perspectives of New Music 24, no. 2 (1986): 
144-207. 

5 Milton Babbitt, "Twelve-Tone Invariants as Compositional Determinants," The Musical Quar­
terly 46, no. 2 (1960): 246-59. 
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concepts of self-similarity are used in mathematics and physics to describe the 
geometry of crystalline structures and serve as the basis for fractal imaging, 
yet few music theorists have explored self-similarity as a basis for structural-
level analysis of musical form.6 The concept of self-similarity is one manife­
station of the subset invariance theorem. Applying this theorem to a subgroup 
of the four (of forty-eight) canonical operators that map a type A, B, C, or E7 

hexachordally combinatorial row form to a row form which maintains hexa-
chordal-invariance produces the results shown in table l:8 

T0 

In+6 

ks k 

TQ In+6 ^6 RIn 

~TÔ l n + 6 R6 R ^ 
In+6 T0 RIn R6 

R6 RIn T0 In+6 

RIn R 6 In + 6 T 0 J 

Table 1: The direct product of the four classical serial operators, T, I, R, RI. 

{T0, In+6, R6, RIn) = D2 is a subgroup of Z12 x D2, which holds hexachordal pc 
content invariant for type A hexachords at n=l 1, type B at n=l, type C at n=3 
and type E at n=3, 7, l l . 9 (Also note that if we wish to examine hexachordal 
combinatorial relationships rather than hexachordal pc invariance relation­
ships, all that is required is to re-map the subgroup {T0, In+6, R6, RIn} via the 

6Some may argue that Schenker's notion of motivic parallelism (as discussed in Charles Burkhart, 
"Schenker's 'Motivic Parallelisms'," Journal of Music Theory 22, no. 2 (1978): 145-75; and elsewhere) 
on the various structural levels — especially between surface gestures and the Urlinie — constitute 
analysis of self-similar properties. Analogously, I use the English terms foreground, middleground, and 
background when discussing Babbitt's structural levels, but my analysis focuses on direct mathematical 
isomorphisms and it is at this juncture that the philosophical basis of Schenker's exploration of 
self-similar relationships and mine diverge. 

7Type A, B, C, and E hexachords are defined by Babbitt in "Some Aspects of Twelve-Tone 
Composition," The Score and LM.A. Magazine 12 (1955): 53-61 as four of the six possible all-
combinatorial hexachords; the other two are designated types D and F. For readers more comfortable 
with Forte set-class labels, types A, B, C, D, E, and F hexachords are equivalent to set-classes 6-1 
(012345), 6-8 (023457), 6-32 (024579), 6-7 (012678), 6-20 (014589), and 6-35 (02468t) respectively 
as given in Allen Forte, The Structure of Atonal Music (New Haven: Yale University Press, 1973). 
Initially I exclude D and F type hexachords from the subset invariance theorem due to the complications 
introduced by the tritone symmetry inherent in these two hexachords. I will develop and expand the 
subset invariance theorem latter in this paper to include the type D hexachord. I will not expand the 
theorem to include the type F "whole-tone" hexachord in this paper since Babbitt avoids this hexachord 
in his compositional practice. 

81 am grateful to Larry Fritts for bringing this example to my attention in his paper "The Group 
Structure of Babbitt's Three Compositions for Piano** read at the Music Theory Midwest/Society of 
Composers Meeting, University of Iowa, 7 April 1995. Discrepancies between our two presentations 
are a result of different notational approaches to the same problem. 

9 Note that each of these four hexachord types contain a zero entry for interval class 6 in the ic 
vector which accounts for the Ré invariance of each. Also note that these n values apply to sets in prime 
form. The interval-class vector for a type A hexachord is <543210>; type B hexachord is <343230>; 
type C hexachord is <143250>; and type E hexachords is <303630>. 
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T6 operator onto a coset {T6, In, RQ, RIn+6}, where the respective values of n 
remain unchanged for each of the four represented hexachord types.) 

I propose that the generation of cosets of the forty-eight canonical operators 
whose membership is contingent upon the hexachordal combinatorial rela­
tionships of a row form provides the basis for large-scale structure in Babbitt's 
music. In the following section I examine how Babbitt selects and combines 
rows to produce maximal diversity on the surface while insuring maximal 
internal coherence at the deeper structural levels. My examination focuses 
exclusively on pitch space, but I see little reason why this same analytic 
principle could not be extended to the rhythmic domain — indeed, the recent 
work by Andrew Mead supports this contention by revealing parallels that exist 
between Babbitt's pitch and rhythmic structures.10 My investigation took 
several of Babbitt's pieces into consideration, spanning almost fifty years of 
compositional practice. In the interest of space, I concentrate on three pieces, 
Duet for Solo Piano (1956), Reflections for Piano and Tape (1975), and Soli 
e Duettinifor Two Guitars (1989) which together use straightforward serial 
structures, array structures, and superarray structures respectively. 

Babbitt's technical procedures are gradually becoming documented through 
articles that address both analytical and theoretical issues.11 Most importantly, 
several published analyses (including those by Dubiel, Lake, Mead, and Peel and 
Cramer) have focused on the difficult issue of how the composer incorporates 
pitch-array strategies. My paper investigates the structure of pitch arrays and 
demonstrates how the hexachordally combinatorial properties of a given row can 
be used as transformational operators on the structural middleground to produce 
a complex network of row forms, all of which relate back to the dihedral group 
properties of the four transformational operators at the background structural-
level, while maintaining maximal diversity on the foreground. 

Simple Serial Structures 
Duet for Solo Piano (1956), which was composed as a gift to his daughter, 
concisely illustrates Babbitt's strategy for large-scale structural design. The 
polyphony is based exclusively on a two-voice counterpoint between the 
pianists right and left hands. The initial row form, <20795463t8el>, presented 
in the right hand beginning at m. 1 derives from a type C all-combinatorial 
hexachord which is hexachordally combinatorial when integrated with the 
coset of canonical operators, {T6,13, Ro, RI9} : refer back to Table 1. The piece 
uses the following progression of row forms on its surface or foreground: 

Measure no.: 1 6 10 14 
Lyne 1 (RH): P^ RI^ h, R^ 
Lyne2(LH): P8 R2 RI7 Ii 

Example 1: Row form array for Duet 

10Andrew Mead, "About About Time's Time: A Survey of Milton Babbitt's Recent Rhythmic 
Practice," Perspectives of New Music 25, nos. 1-2 (1987): 182-235. 

11 As the list of citations in footnote no. 4 suggests. 
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We first need to examine the relationships between the eight row forms that 
structure the piece. The eight row forms, {P2, RIlf I7, Rg, Pg, R2, RI7, Ii}, form 
a collection which is generated from a single prime-form set P2, its T0 trans­
position (trivially), its I3 inversion, their T6 transpositions and the RQ retro­
grades of all sets derived thus far, shown in equation 1. 

Eq. 1 {P2}®{T0, T6,13,19, Ro, Re, RI3, RI9}={P2, Pg, Ii, I7, R2, Rg, Wi, RI?} 

® denotes an operator whose operands consist of a set of row forms and a set 
of canonical operators. The operation produces a resultant set of row forms 
which is comprised of the union of the application of each and every member 
of the canonical operator set to each and every member of the row form set, in 
no specific order. 

To generalize this from a slightly different perspective, I will call P8 the 
hexachordal complement of P2, and label P8sP2-l, then equation 2, which 
includes {P2, P2~l} as the set of row forms and {T6,13, RQ, RI9} as the coset 
of canonical operators which effect hexachordal combinatoriality for a type C 
all-combinatorial hexachord, also describes the pc content of this piece. 

Eq. 2 {P2, P2~l}<8>{T6,13, Ro, RI9}s{P2, Pg, Ilf I7, R2, Rg, Rib RI?} 

This equation could also be expressed using the subgroup of operators which 
hold hexachordal content invariant, shown in equation 3. 

Eq. 3 {P2, P2~1}®{T0,19, R6, RI3MP2, Pg, Ii, I7, R2> Rg, Wi, RI7} 

Please note that equations 1, 2, and 3 are all equivalent. Furthermore, in each 
case I chose P2 as my reference row form, but I could have used any one of the 
eight representative row forms in the piece as my reference point and produced 
the same 8 row collection in each case. 

Returning to the array of row forms distributed throughout the piece, another 
important property structures the horizontal relationships between the succes­
sive row forms in each hand and the vertical relationships of the simultaneously 
presented adjacent row forms. The diagram in Example 2 presents a chronolo­
gical account of the progression of row forms reading left to right and an 
account of the combinatorially paired row forms reading top to bottom. The 
large arches that span from start to finish account for the net result of the 
composite linear operations.12 

As we might expect, the vertical pairings of row forms consistently take 
advantage of the coset of combinatorial operators, {T6,13, RQ, RI9}. Moreover, 
and in keeping with Babbitt's edict of maximal diversity, each one of the four 
operators is used one time only. What seems less predictable, however, is the 
set of operators acting upon the linear or horizontal transformations of succes­
sive row forms. The set of operators that move the piece temporally forward 

12The network presentation is modelled after Henry Klumpenhower, "A Generalized Model of 
Voice-leading for Atonal Music" (Ph.D. diss., Harvard University, 1991); David Lewin, Generalized 
Musical Intervals and Transformations (New Haven: Yale University Press, 1987); and David Lewin, 
"Klumpenhower Networks and Some Isographies That Involve Them," Music Theory Spectrum 12, no. 
1 (1990): 83-120. 



Example 2: Transformational network of pitch structure in Duet. 

consist of {I9, R$, RI3}, which if we admit the identity operator T0 to this set, 
constitutes the subgroup of operators that maintain pc hexachordal invariance 
for a type C hexachord, {T0,19, R6, RI3}. 

Just as we created a complement relation, {P2, P2"1}» between two distinct 
row forms, we can define the complement-set of canonical operators to the 
coset of hexachordally combinatorial operators as abstractly being the sub­
group of operators which maintain hexachordal pc invariance. (Hie formal 
definition for this equation is included in the appendix, Definition 6.) If Ss{T6, 
In, RQ, RIn+6}, a coset of D2xZ12 that admits hexachordal combinatoriality for 
type C hexachords at n=3, then we shall recognize S"1 as given in equation 4 
to be a subgroup of D2xZ12 that holds hexachordal pc content invariant for type 
C hexachords at n=3. 

We can now abstractly identify the background structure of this brief 
composition. By background structure, I simply mean that the entire piece can 
be represented as the direct product of a single, well defined set of row 
forms and a subgroup of operators. By beginning with the pitch map at the 
foreground, shown in Example 3, the algebraic model is developed as the 
middle- and background levels are successively extracted from the fore­
ground. 

The analytic model in Example 3 marries algebraic self-similarity with 
multi-level structural paradigms, yielding what I believe to be a novel, albeit 
complex, perspective on an otherwise simple serial piece. Some critics might 
argue that this analytical approach is comparable to tapping a thumb tack into 
the wall with a sledge hammer, and perhaps in this simple case such an 
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argument has some merit. However, its application to Reflections for Piano 
and Tape (1975) suggests that the proverbial thumb tack has developed into a 
large spike and the analytic apparatus no longer seems quite so extravagant. 
For convenience, I here use John Peel and Cheryl Cramer's analysis of 
Reflections as my point of departure.13 

Array Structures 
The all-combinatorial properties of the hexachord that structures Reflec­
tions' type A row are exploited in the construction of the 12-lyne, 6-block, 
77-partition, all-partition array which forms the foundation for the piece's 
pitch structure.14 The transformational network which generates the fore­
ground pitch-class all-partition array in the first section of the piece (mm. 1-82) 
is shown in Table 2. 

13 Peel and Cramer, "Correspondences and Associations." I draw primarily upon the chart of row 
forms that Peel and Cramer present as structuring the surface of the form, given on pp. 186-203. Note 
that wherever they have identified a prime row form as Sn, I have rewritten the label as Pn. 

14Ibid. Babbitt himself first outlined partition array strategies in "Since Schoenberg," Perspectives 
of New Music 12, nos. 1-2 (1974): 3-28, however I refer the reader to the recent writings of Andrew 
Mead and William Lake for a clearer explication of partition arrays. See for example Andrew Mead, 
"Detail and the Array"; idem, An Introduction to the Music of Milton Babbitt (Princeton, 1994), 
124-203; William Lake, "The Architecture of a Superarray." 
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Black l 

1 I» 

1 I. 
( Po 

| Rl2 
1 R, 
| RI4 
l Ru 
I Rio 
I R7 

Block 2 

W7 
R2 
RI, 
R4 
RI5 

Ro 

P9 
I2 
p., 
I4 
P7 
Io 

Block 3 

I. 
P8 
I3 
P.o 
In 
P« 

R3 
RI, 
R5 
RI.o 
R. 
RIe 

Block 4 

R« 
RI, 
Rio 
RI3 
R« 
RI„ 

I, 
p3 
I.o 
P5 
16 
P, 

BlQ£ki 

P2 
I7 
P4 
I» 
Po 
I5 

Rl2 
R, 
RI4 
Ru 
Rio 
R7 

BiQCli 

RI7 I 
R2 J 
RI9 1 
R4 / 
RI5 I 
Ro J 

P, I 
I2 / 
P„ 1 
I4 J 

Io / 

Table 2: Row form array for Reflections (mm. 1-82). 

By the end of the fourth block of the array, all forty-eight forms of the row 
have appeared once and only once. Blocks 5 and 6 use row forms which have 
previously appeared in blocks 1 and 2 exclusively. Careful analysis of this 
network reveals that the lynes of the array are grouped by row pairs that under 
I5 are hexachordally combinatorial (indicated with curly brace brackets). These 
are further related by treating the lower six lynes as an RI2 transform of the 
upper six lynes. To carry this network of transformational relationships one 
level deeper I have labelled the twelve row forms that make up array block 1 
as Al and I have traced the progression of row forms temporally through the 
array. This resultant network of horizontal transformations is shown in the 
middleground analysis of Example 4. 

Example 4: Middleground network of array structure in Reflections (mm. 1-82). 

Returning to the foreground in the second section of the piece (mm. 83-
178), the pc array utilizes a different distribution of row forms, as shown 
in Table 3. The use of all forty-eight row forms by the end of the fourth 
block is still in place, as are the row pairs that are I5 hexachordally 
combinatorial (indicated with curly brace brackets) and the RI2 relationship 
between upper and lower six lynes. 



17/2(1997) 9 

Block 1 BjQ£k_2 Bteskl Block 4 BIQCJLS Block 6 

Ro 
RI5 

RI, 
Rio 
RI, 
R, 

I» 
P3 

Iio 
P5 

I* 
P, 

Is 
Po 
Pio 
I3 
p, 
I. 

R3 
RI8 

R5 

W10 
Ri 
w. 

Mu 
R. 
R* 
RI9 

R2 

RI7 

P, 
I2 
P.. 
I* 
P7 
Io 

p6 

III 
I, 
P4 
I7 
p2 

RIj 
R, 
RI4 
R11 
RI» 
R7 

Ro 
RI5 

RI3 
Rio 
RI, 
R, 

I. 
P3 
1.0 
P5 

I6 
p. 

15 ) 
Po J 
Pio I 
I3 / 

I. J 

R, J 
RI, J 
R5 1 
RI 1 0 / 
R, I 
RI6 / 

Table 3: Row form array for Reflections (mm. 83-178). 

Returning to the middleground analysis, I have labelled the twelve row forms 
that comprise block 1 as A2 for this second section of the piece. The resulting 
network of horizontal transformations is shown in the middleground analysis 
given in Example 5. Please take a moment to note the homomorphism that 
characterizes the relationship between the transformational networks of the 
first and second sections of this work by comparing Examples 4 and 5. 

Example 5: Middleground network of array structure in Reflections (mm. 83-178). 

To reduce the structure one more level, I shall denote §1 and §2 to represent 
the pc arrays for sections 1 and 2 of the piece respectively, as given in Equations 
5 and 6: 

From m. 179 to the end of the piece, Babbitt juxtaposes 111 transformations of 
ordered structures §1 and §2, which yields the formal structure shown in 
Example 6. 

Example 6: Middleground network of array structure in Reflections. 
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The transformations employed at the middleground level are once again 
restricted to the coset of four hexachordal-combinatorial operators and the 
subgroup of four hexachordal-invariance operators for type A hexachords, 
S-1={T0,15, R6, RIn} and S={T6, I u , R0, RI5} respectively. As in Duet, this 
achieves compositional unity on the middleground structure while simulta­
neously exercising the concept of maximal diversity on the foreground; in this 
piece Babbitt manages to circulate through all forty-eight row forms four times 
at the foreground level. Moving toward the background, the algebraic model I 
offer for the structure of Reflections is provided in Example 7. 

Example 7: Analytic model of Reflections at successive reductional levels. 

At this point the need for levels of abstraction begins to come into better 
focus, for if I were to attempt to interpolate this middleground structure into a 
shallower middleground and eventually to the foreground structure — which 
was originally provided in the Peel and Cramer analysis — the level of 
complexity would render the model ineffective.15 

Further analysis of the pitch structure in Reflections concerning the inter-
relatedness of individual row forms within Al and A2 or between Al and A2 
have yielded inconclusive results, or more correctly, have generated subgroups 
of operators that do not allow for the tidy analytical models based on the subset 
invariance theorem that I have been developing thus far. This does not mean 
that these relationships are uninteresting, but since they are tangential to the 
correlation between pitch structure and the subset invariance theorem, I need 
not explore them further here. 

151 need to begin with the foreground analysis in order to extract the middle- and background 
structures — my analytical methodology must start with the surface pc's and unidirectionally move 
toward the background algebraic model. 
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Superarray Structures 
Soli e Duettinifor Two Guitars (1989), the first in a series of three pieces that 
all share the title Soli e Duettini, is an example of Babbitt's most recent 
compositional practice of using nested array structures to produce what several 
scholars have described as superarray structures.16 To date, the analytic litera­
ture for these three particular pieces is confined to a brief discussion of their 
large-scale superarray design in the closing pages of the final chapter in 
Andrew Mead's recent study of Babbitt's music.17 

The twelve-tone row for the piece for two guitars, <0546te293187>, derives 
from a type D, second order all-combinatorial hexachord which is hexachor­
dally combinatorial when integrated with the coset of canonical operators, {T3, 
T9,15, In, Ro, ̂ 6» RI2, Rig} and hexachordally invariant when combined with 
the subgroup of canonical operators {T0, T6,12,18, R3, R9, RI5, RIn }.18 

The basic array for Soli e Duettini is based on a 6-lyne, 8-block, 58-partition 
array which incorporates each one of the 58 unique partitioning patterns of 6 
lynes as well as all 48 distinct forms of the twelve-tone row once and only 
once.19 The basic array for guitar 1 is a T6 transformation of the array used 
for the violin part in The Joy of More Sextets while the basic array for guitar 
2 is an M7R4 transformation of the basic array used for guitar l.20 Table 4 
provides the transformation network which structures the foreground pc array 
for guitar 1. 

16The other two pieces are Soli e Duettinifor Guitar and Flute (1989) and Soli e Duettinifor Violin 
and Viola (1990). In An Introduction to the Music of Milton Babbitt, 204, Andrew Mead points out that 
many of the pieces from Babbitt's third period, beginning with Ars Combinatoria (1981), incorporate 
superarray strategies. 

17Ibid., 255-63. 
18 Recall from the discussion of the subset invariance theorem in the first section of this paper that 

a type D hexachord is one of the six all combinatorial hexachords defined by Babbitt. Specifically, this 
type is a second-order, all-combinatorial hexachord which has the Forte set-class label 6-7, its prime 
form is (012678) and its interval-class vector is <420243>. Notice that the value for n in the subset 
invariance theorem is similar to that of the type A hexachord used in Reflections with some modifications 
to accommodate the tritone symmetry inherent in the second-order all-combinatorial type D hexachord. 
To begin let n=l 1, as is the case in the subgroup for the type A hexachord from the original theorem 
(see Table 1), but modify the subgroup to read {To, In+3, R3, RIn}. Next, combine the subgroup with the 
coset {TO, In+9, R9, RIn+6}, produced via a T6 transformation on the subgroup itself, yielding the total 
hexachordal invariance subgroup S'^fTo, Té, In+3, In+9, R3, R9 RIn, RIn+6}. Re-mapping the hexachor-
dal pc invariance subgroup via the T3 operator onto the coset, S={T3, T9, In, In+6, Ro, Ro, RIn+3, RIn+9}, 
will produce the hexachordal combinatorial operators for the type D hexachord. These modifications 
account for the difference between the type A hexachord which is accurately described as a 6-pc 
chromatic cluster and the type D hexachord which may be best characterized as two disjunct 3-pc 
chromatic clusters a tritone apart. 

19Ibid., 271. Mead describes the array for Soli e Duettini as being the same form as the array used 
for the solo violin part in The Joy of More Sextets, which is provided on pages 278-79. 

20M7 is the multiplicative operator which maps a given row form onto its circle-of-fifths transform. 
To generalize the multiplicative operator using the same format as the generalized models of the four 
canonical operators: Let X be the set of all rows; Let Xy=(xi, X2,..., xn)€ X; Define the transformation 
onX: Mn:X-»X, whereMn(Xy)=(nxi,n-X2,..., nxn) mod 12. 
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Blûfitl moskl mskl moskà moskl S I Û C L É BlfifiLZ B t o c k i 
J It W* P4 Ri Pio RIii h R7 1 
l p? R4 1,1 RI8 l5 R,0 P. Rl2 J 
I Ï9 Pu R2 Rio R8 P5 l3 Rl6 1 
I R5 RI3 io P2 l6 RI9 R„ P« J 

. J ** I7 R3 RI4 P9 Ii Ro RI,o 1 
I p6 RI7 R9 I» R3 RI, P0 l4 / 

Table 4: Row form array for guitar 1 in Soli e Duettini. 

As in our previous analysis, the lynes of the array are grouped into hexa-
chordally combinatorial pairs. Unlike the lyne pairs in the array used in 
Reflections which all shared the same transformational operator for their 
combinatorial pairings, each of the lyne pairs in this array has a unique transfor­
mational operator to effect hexachordal combinatoriality. The upper lyne pairs are 
related by I5 or In , the middle lyne pairs by RI2 or RI8, and the lower lyne pairs 
by RQ or R6. If we group these six operators in a set along with T3 and T9, which 
are the two operators that allow us to map transpositionally the first hexachord 
of the row onto the second, we produce the coset of hexachordally combinato­
rial canonical operators for a type D hexachord, S={T3, T9,15, I u , RQ, R6, RI2, 
Rl8}. 

Referring back to Table 4 for a moment, let the column of row forms which 
comprise Block 1 be called A, such that 

We can now follow the temporal progression of lyne pairs through the array at 
a deeper structural level by inspecting the linear network of transformational 
operators which operate on A, as shown in Example 8. 

Example 8: Middleground network of simple-array structure in Soli e Duettini. 

As was the case in the previous two analyses, the network of horizontal 
transformations consists exclusively of the subgroup of canonical operators 
which produce hexachordal invariance, S - ^ T Q , T6,12,18, R3, R9, RI5, R I H } . 

Moving yet another level deeper in the structure of this piece, the partition­
ing strategy for the superarray is based on a series of alternating duets and solo 
passages which are delineated by the eight blocks of the basic arrays for the 
two guitars forming a ten-block superarray. Andrew Mead diagrams the super-
array structures for all three pieces titled Soli e Duettini and lines them up for 
comparison.21 Following Mead, I have labelled the blocks in guitar l's basic 

21 Mead, An Introduction to the Music of Milton Babbitt, 256. 
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array from 1 to 8 and the blocks in guitar 2's basic array from 8 to 1 to reinforce 
the retrograde relationship between the two basic arrays as shown in Example 
9. I have added the measure numbers and superarray block numbers above 
Mead's diagram for clarity. 

Example 9: Block analysis of superarray structure in Soli e Duetdni. 

Blocks from the basic arrays marked with an asterisk contain an extra 
vertical aggregate to accommodate the partitioning strategy, therefore Babbitt 
is forced to work with unequal rates of aggregate completion between the two 
guitar parts in the first, third, fourth and sixth duets (i.e., superarray blocks 1, 
5, 7, and 10). In the second and fourth duets, Babbitt maintains a consistent 
one to one aggregate correspondence between the two parts. By combining 
Examples 8 and 9 we are able to algebraically model the middle- and back­
ground pitch structure as shown in Example 10 below. 

In the middleground equation guitar 1 is the upper portion of the expression 
and guitar 2 the lower. The dashed lines (-) in the shallow middleground 
expression represent the places where the respective guitar parts are silent in 
the ten-block superarray structure. 
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It should be evident at this point that the iterative quality of nested arrays 
does not significantly alter the deep level structure as Babbitt moves from a 
simple serial structure through to a superarray design. In fact, in each of the 
three analyses in this paper the background model has been based on a single 
row form or coset of row forms composed with the set theoretic union of the 
transformational operators that produce hexachordal combinatoriality (S) and 
hexachordal invariance (S-1). The main difference between the simple serial 
structural model and the superarray structural model is the inclusion of the 
transformational operator that generates the other forms of the basic array into 
the equation. 

Conclusion 
Before I close, I would like to offer the following postulate: Given a twelve-
tone row based upon an all-combinatorial hexachord that lacks a tritone in its 
ic-vector, the potential subgroup of operators that can generate maximal 
diversity while maintaining maximum internal structural coherence would be 
defined according to the subset invariance theorem (as worked out in Table 1) 
and the resultant group would manifest itself on the surface through the 
exploitation of hexachordally combinatorial pairings of row forms, even if the 
partitioning strategy did not favour hexachords. 

I will not attempt to prove this postulate here, but based on the analyses I 
have completed thus far, I am persuaded that these are reasonable statements 
to make. Moreover, I believe further queries along these lines will yield results 
that would both strengthen and expand my current analytical model. Like many 
others, I believe that the richly varied surface texture of Babbitt's work 
distracts the listener from recognizing the inherent formal unities that structure 
deeper levels of his music. I do not believe that this fact alone prevents the 
informed listener or interpreter from detecting, at least subconsciously, the 
underlying formal unities in this repertoire, but it certainly requires a reassess­
ment of the listening process and toward that end, new methods of dealing with 
the surface of this music. More directly, the rich and varied textures that mark 
the surface of Babbitt's twelve-tone compositional practice often seem to 
obstruct or block simpler underlying structures. Nevertheless, just as we 
tolerate and enjoy the complex strategies that underlie tonal structural levels, 
we need to make an equally strong effort to come to grips with the intricacies 
of Babbitt's extended serial compositions. 

Appendix 
Notational conventions 
A,B 
AuB 
a,b€A 
{a,b} 
(a,b) 
a"1 

a=b 
a==b 

mathematical sets 
union of sets A and B 
a and b are members of set A 
unordered set consisting of elements a and b 
ordered set consisting of a followed by b 
inverse of a with respect to a given operation 
a is abstractly equivalent to b 
a approximately equivalent to b 
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Y: A-»B operation Y on A maps A onto B 
A£l: A-»B the application of operation Cl to A and then A to the result of the first 
operation onto B, called the composition of maps Q, and A. 

2. Twelve-tone row forms 
Xy=(xi, X2,..., X12), an ordered 12-tuple which exhibits the following properties: 
i) the 12 entries of Xy consist of all the integers from 0 to 11 ; 
ii) Xy€ {Py, Iy, Ry, RIy} where 0<y<l 1, and 

Py Prime row form label beginning with pc y 
Iy Inversion row form label beginning with pc y 
Ry Retrograde row form label ending with pc y 
RIy Retrograde Inversion row form label ending with pc y 

3. Canonical operators 
To define the four canonical operators (i.e., transposition (T), inversion (I), 
retrograde (R), and the composite operator retrograde-inversion (RI)): 
Let X be the set of all rows (i.e., all permutations of the integers 0 to 11); 
Let Xy=(x!, x2,..., x12) € X; 
Define the following transformations on X: 
Tn:X-»X, where Tn(Xy) = (x^n, x2+n,..., x12+n) mod 12 
In:X-»X, where In(Xy) = (n-xj, n-x2,..., n-x12) mod 12 
Rn:X->X, where Rn(Xy) =( x_! mod 13+n, x_2 mod B+n,..., x.12 mod 13+n) mod 12 

= (x12+n, xn+n,..., Xi+n) mod 12 
RIn:X->X, where RIn(Xy) = (n-x_! mod 13, n-x_2 mod 13,..., n-x_12 mod 13) mod 12 

= (n-x12, n-xn,..., n-xi) mod 12 

4. Definitions 
Definition l:22 A mathematical group (G, °) consists of a non-empty set of abstract 

objects, G, and a binary operator, °, defined on the elements of G which have the 
following properties: 
i) closure: x°ye G for all x,ye G; 
ii) associativity: (x°y)°z=xo0(yoz) for all x,y,ze G; 
iii) identity: there exists an element e€ G, such that x°e=*e °x=x, for all xe G; 
iv) inverse: for all x€ G, there exists an x~*e G, such that x""lox=x°x-1=£. 

Definition 2: ZQ is a cyclic group which consists of a set of n integers {0, 1,..., n-1}, 
together with the binary operation of mod n addition, such that the equation i+j=k 
(mod n) is always satisfied for any 2 integers i, j<n and their integer sum k (mod n)<n. 

Definition 3: Dm is a dihedral group of order 2m which is isometric under rotation, 
translation or reflection. The specific case of D2 can be thought of as the non-cyclic 
group of order 4 which is generated by the cross product of Z2xZ2 which is a specific 

22Based on definitions and theorems from H.A. Elliot, K.D. Fryer, J.C. Gardner and Norman J. 
Hill, Vectors, Matrices and Algebraic Structures (Toronto: Holt, Rinehart and Winston, 1980), 367-407; 
and Derek J. S. Robinson, A Course in the Theory of Groups, Graduate Texts in Mathematics, no. 80, 
ed. J.H. Ewing, F.W. Gehring and P.R. Halmos (New York: Springer Verlag, 1991), 1-42. 
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direct product group known as the Klein-4 group in geometrical group theory (after 
ninteenth-century mathematician Felix Klein). 

Definition 4: DmxZn is a direct product group generated by the cross product of Dm with 
Zn, and has order 2mn. 

Definition 5: Any given subset of a group which remains closed under the parent group's 
binary operation is referred to as a semi-group. The semi-group will exhibit some of 
the same structural characteristics as the parent group, but may lack either the identity 
property or the inverse property or both properties of the parent group. If the subset 
of the group also lacks the closure property under the parent group's binary operation, 
the subset is referred to as a coset. 

Definition 6: If S is defined as a coset of D2XZ12, and S represents the unordered set of 
canonical operations that result in hexachordal combinatoriality for a given 
twelve-tone row, then we shall recognize its inverse, S_1=T6(S)=D2, a subgroup of 
D2XZ12 that represents the unordered set of canonical operations that result in 
hexachordal invariance for the same twelve-tone row. 

Subset Invariance Theorem: for any group G which permutes elements of some ordered 
set U, there exists a non-trivial subgroup H which fixes the content of some non-trivial 
subsegment S of U, while permuting its elements. 

Definition 7: Lyne is analgous to a monophonie interpretation of a linear series of pc sets 
or row forms.23 In Babbitt's music, lynes are usually distinguished by register, dynamic, 
rhythmic pattern, articulation, orchestration, or any combination of the above. 

Definition 8: An array is an abstract combination of two or more simultaneous horizontal 
row forms or lynes which can be partitioned into columns that form vertical 
aggregates.24 Babbitt incorporates several important classes of arrays into his 
compositional language including trichordal arrays, all-partition arrays and 
superarrays (i.e., arrays of arrays).25 

Abstract 
The unfolding of a compact algebraic group into a larger structure which exhibits an 
isomorphic relationship with the smaller group is the essence of "self-similarity." 
Through the use of transformational networks which take advantage of the group 
properties of the forty-eight canonical operators and through the examination of the 
hexachordally combinatorial properties of Babbitt's row forms, this paper examines the 
manner in which Babbitt selects and combines rows to produce maximal diversity on the 
surface while optimizing internal coherence at the deeper structural levels. This study 
focuses on three works that cover straightforward serial structures, simple array structures 
and superarray structures respectively — Babbitt's three main compositional strategies. 

23 The term "lyne" is introduced by Michael Kassler in "Toward a Theory That Is the Twelve-
Note-Class System," Perspectives of New Music 5, no. 2 (1967): 1-80. 

24The term "array" was first used by Godfrey Winham in "Composition with Arrays," Perspectives 
of New Music 9, no. 1 (1970): 43-67. 

25It is beyond the scope of this paper to provide genralized models of these array classes. The 
interested reader can refer to Andrew Mead, An Introduction to the Music of Milton Babbitt for a detailed 
description of these various types of arrays and analyses of Babbitt's idiomatic strategies for 
incorporating these arrays into his music. Mead loosely divides Babbitt's career into three creative 
periods, each marked by an affinity for a particular array class: 1947-60, trichordal arrays; 1961-80, 
all-partition arrays; 1981-present, superarrays. 


