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abstract–This paper proposes and discusses an instrumental variable estimator that can 
be of particular relevance when many instruments are available and/or the number of 
instruments is large relative to the total number of observations. Intuition and recent work 
(see, e.g., Hahn, 2002) suggest that parsimonious devices used in the construction of the 
final instruments may provide effective estimation strategies. Shrinkage is a well known 
approach that promotes parsimony. We consider a new shrinkage 2SLS estimator. We derive 
a consistency result for this estimator under general conditions, and via Monte Carlo 
simulation show that this estimator has good potential for inference in small samples.

IntroductIon

Recent theoretical work in instrumental variable estimation has focused on the 
consequences of having “weak instruments”, “many instruments”, or a combination 
of these two cases. Instrument weakness is, unfortunately, rather likely in economic 
applications, and the availability of larger and larger information sets makes the 
many instruments case also relevant for empirical analyses. Hence, the theoretical 
contributions on IV estimation have a vast range of practical applicability.

By “weak instruments” we label the case where instrumental variables are only 
weakly correlated with the endogenous explanatory variables of an instrumental 
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variables (IV) regression. A natural measure of instrument weakness (or strength) in 
a linear IV framework is the so-called concentration parameter, see, e.g. Phillips (1983), 
Rothenberg (1984), Stock and Yogo (2003b) and Chao and Swanson (2005). In standard 
analysis the concentration parameter is taken to grow at the rate of the sample size 
whereas in the case of weak instruments this parameter grows more slowly or, in the 
extreme case introduced and considered by Staiger and Stock (1997), it remains finite 
asymptotically. Weak instruments affect the properties of IV estimators such as the 
two stage least squares (2SLS) and the limited information maximum likelihood 
(LIML) estimators, in particular they can become inconsistent.

The “many instruments” case was first analysed by Morimune (1983) and later 
generalized by Bekker (1994). Other relevant papers include Donald and Newey 
(2001), Hahn, Hausman, and Kuersteiner (2001), Hahn (2002), and Chao and 
Swanson (2004). In general, the larger the available information set the more 
efficient the resulting estimator. However, when the number of instruments becomes 
too large, standard IV estimators can become inconsistent, as in the weak instrument 
case though for different reasons.

These two developments in the IV literature have later been combined to provide 
a comprehensive framework for the analysis of the properties of IV estimators in 
the case of many weak instruments. Work in this area includes Stock and Yogo 
(2003a), Newey (2004), Chao and Swanson (2005), and Hansen, Hausman, and 
Newey (2006). The Chao and Swanson paper is closest to the spirit of the analysis 
of the current paper. A clear conclusion from this work suggests that inconsistency 
of IV estimators is a probable outcome when many weak instruments are used.

Given this problem, recent research focuses on considering parsimonious modeling 
methods for the large set of potentially weak instruments to avoid IV estimator 
inconsistency. In particular, Kapetanios and Marcellino (2010) and Bai and Ng (2010) 
suggest that imposing a factor structure on the set of instruments, extracting estimates 
of these factors and using them as instruments can be very useful. Of course, an issue 
with this approach is the need to assume a factor structure, albeit a possibly weak 
one, as discussed in detail in Kapetanios and Marcellino (2010). Simulation evidence 
suggests that if no factor structure exists then assuming one is problematic for IV 
estimation as one would expect. Another approach similar but designed to parsi-
moniously summarize large sets of instruments in the complete absence of a factor 
structure is proposed by Kapetanios and Marcellino (2007). The basic idea is that a 
finite number of cross-sectional weighted averages of the available instruments can, 
under certain conditions, be valid instruments themselves.

The current paper provides a new approach to deal with the IV inconsistency 
issue, which shares the search for parsimony with the papers mentioned in the 
previous paragraph but can be applied under more general conditions. In particular, 
we suggest that a shrinkage estimator be considered in the first stage of IV regression 
to construct appropriate instruments which can then be used in a standard way in 
the second stage to estimate the parameters of the structural equation. Shrinkage 
promotes parsimony in the first stage of estimation. In addition to the reasonably 
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strong case for parsimony for IV estimation made in the cited literature, Hahn 
(2002) provides grounds for parsimony also in terms of optimal inference when 
many instruments are available.

After introducing our new estimator, that we label Two Stages Least Squares 
Shrinkage (2SLSS), we provide a formal proof of its consistency under general 
conditions on the instrument set. Further, we carry out a Monte Carlo study which 
provides clear evidence in favor of the new estimator compared with existing 
estimators such as 2SLS or LIML (also when the number of instruments is large 
relative to the total number of observations). Finally, we apply the new estimator 
to the Angrist and Krueger (1991) dataset which has been repeatedly used in the 
literature, in the context of analyzing new methodological IV-related advances. 
We propose an innovative way of using this dataset in order to evaluate the per-
formance of the new estimator relative to existing ones.

The paper is structured as follows: Section 1 presents the theoretical results. 
Section 2 reports results of the Monte Carlo study. Section 3 presents the results of 
our empirical application. Finally, we conclude. Proofs are relegated to an Appendix.

1. theoretIcal results

The model is given by

y1n = Y2nβ+un ,
 

(1)

Y2n = ZnΠn +Vn ,
 

(2)

where y
1n

 and Y
2n

 are respectively an n x 1 vector and an n x G matrix of observations 
on the G + 1 endogenous variables of the system, Z

n
 is an n x K

n      
 matrix of obser-

vations on the K
n
 instrumental variables, and un = (u1,...,ui ,...,un )'  and 

Vn = (v1,...,vi ,...,vn )'
 are, respectively, an n x 1 vector and an n x G matrix of 

random disturbances.

We propose a two stage shrinkage estimator for β obtained as follows: in the 
first stage, we obtain instruments by using a standard shrinkage estimator to 
estimate Πn  

in (2). Then, we use these instruments in a standard fashion to obtain 
a second stage estimator for β. For simplicity we use the following shrinkage 
estimator: 

Π̂n = (Zn
' Zn + snI)−1 Zn

' Y2n (Z '
n 
Z

n
 + s

n
I)–1 Z '

n 
Y

2n
.   

Then, straightforwardly, the two stage estimator is given by

β̂2SLSS = Y2n
' Zn (Zn

' Zn + snI)−1 Zn
' Y2n( )−1

Y2n
' Zn (Zn

' Zn + snI)−1 Zn
' y1n 

(Y '
2n 

Z
n
(Z '

n 
Z

n
 + s

n
I)–1 Z '

n 
Y

2n
)–1 Y '

2n 
Z

n 
(Z '

n 
Z

n
 + s

n
I)–1 Z '

n 
y

1n
. (3)

We refer to this estimator as the 2SLS Shrinkage (2SLSS) estimator. This 
estimator becomes of interest if the shrinkage parameter s

n
 becomes large enough 

to promote parsimony asymptotically. As we will see, for this it is required that  
n/s

n
 = o(1). We make the following assumptions.
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Assumption 1 (i) Kn →∞  
as n→∞  such that Kn / n→ τ , 0 ≤ τ ≤C <∞. 

(ii) ∀n , Z 'n 
Z n 

+ snI has full rank. (iii) There exist two nondecreasing sequences 
of real numbers, r

n
 and s

n
, such that as n→∞  rn / n→µ  for some nonnegative 

constant µ, n / sn = o(1)  and sn / nKn = o(1) , and such that

q
n
Π

n
' Z

n
' Z

n
(Z

n
' Z

n
+ s

n
I)−1 Z

n
' Z

n
Π

n

r
n

→Ψ , (4)

where qn = sn / n , almost surely for some positive definite matrix Ψ and

q
n
Π

n
' Z

n
' Z

n
(Z

n
' Z

n
+ s

n
I)−1 Z

n
' Z

n
(Z

n
' Z

n
+ s

n
I)−1 Z

n
Z

n
Π

n

r
n

→ 0

almost surely. (iv) The eigenvalues of Z
n
' Z

n
/ n  are bounded away from zero and 

infinity for all n.

Assumption 2 (i) Z
n
 and η

i
= (u

i
,v

i
' )'

 
are independent for all i,n, (ii)

 ηi  i.i.d.(0,Σ) , where Σ =
σ

uu
σ

Vu
'

σ
Vu

Σ
VV

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ , (iii) η

i
 has finite fourth moments.

Given the above, we have the following theorem: 

Theorem 1 Let P
Zn

sn = Z
n
(Z

n
' Z

n
+ s

n
I)−1 Z

n
' . Let qn = sn / n

 
such that qn →∞  

and Kn

qn

→∞
 

and rn

qn

→∞ . Let the shrinkage estimator be given by

β̂
2SLSS

= Y
2n
' P

Zn

snY
2n( )

−1

Y
2n
' P

Zn

sn y
1n( ) .

Assume that Kn

rn

→ 0 . Then, β̂2SLSS  is consistent for β
0
.

Some comments on the assumptions are in order. In particular, assumption 1(iii) 
is worthy of comment. The first part of assumption 1(iii) is the counterpart of the 
assumption relating to the concentration parameter made usually in the literature 
concerning the 2SLS and other IV estimators. Note that there is no need for the 
sequence r

n
 satisfying assumption 1(iii) for the 2SLSS estimator to be the same or 

have the same order of magnitude as that required for the 2SLS estimator.

The importance of parsimony for IV estimation has been pointed out by? Hahn 
(2002) who conjectured that a 2SLS estimator using a small subset of available 
instruments, when the number of available instruments is large, may be optimal. 
We view our shrinkage estimator in the same spirit as the estimator suggested by 
Hahn (2002). It is important to note condition 1 of Hahn (2002) which requires 
that the fit of a parsimonious estimator be comparable to that of the 2SLS estimator 
using all instruments. In this sense it is reasonable to expect that the fit of the 
shrinkage estimator may, under certain conditions relating to the structure of Πn , 
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be close to that of the 2SLS estimator using all instruments, thereby implying that 
the r

n
 sequence for the 2SLSS estimator be of a larger order of magnitude than the 

analogous sequence for the 2SLS estimator. However, it is difficult to envisage 
specific conditions for Πn  that ensure this is the case.

We have chosen to focus on the simplest shrinkage estimator on the grounds 
of simplifying the asymptotic analysis. This estimator shrinks, in a uniform way, 
the parameter estimates towards zero. It may in fact be more appropriate to shrink 
towards a nonzero constant or vary the degree of shrinkage depending on the 
instrument. For such shrinkage estimators the condition (4) would have a different 
form and therefore it is entirely possible that such estimator will have different and 
possibly superior consistency properties, depending of course on the data generating 
process for z

t
. We leave theoretical investigation of this possibility to future work 

mainly because there are many possibilities for the shrinkage setup. However, in 
the Monte Carlo section we consider uniform shrinkage to a nonzero constant and 
obtain interesting results.

2. monte carlo evIdence

In this section we provide a Monte Carlo study of the 2SLS Shrinkage (2SLSS) 
estimator and its relative performance compared to the traditional 2SLS estimator, 
the LIML estimator, and the bias corrected Nagar’s B2SLS estimator. These esti-
mators fall in the class of k-estimators, and can be written as: 

β̂
K

= Y
2n
' Z

n
(Z

n
' Z

n
)−1 Z

n
'Y

2n
−λY

2n
' Y

2n( )−1
Y

2n
' Z

n
(Z

n
' Z

n
)−1 Z

n
' y

1n
−κY

2n
' y

1n( ), (5)

where the 2SLS estimator corresponds to λ = 0, the LIML corresponds to setting 

λ to the minimum of 
(Y −Y

2n
β)' Z

n
(Z

n
' Z

n
)−1 Z

n
' (Y −Y

2n
β)

(Y −Y
2n
β)'(Y −Y

2n
β)

  

,

 

and the B2SLS corresponds 

to λ =
Kn − 2

n
.

The basic setup of the Monte Carlo experiments is: 

yi = xi +εi , i = 1,...,n  (6)

zij = eij , j = 1,...,Kn , i = 1,...,n  (7)

xi =
j=1

Kn

∑Kn
−1/2(1+α j )zij +ui ,  (8)

where eij  i.i.d.N(0,1) , cov(eil ,esj ) = 0
 
for i ≠ s  or l ≠ j ,α j  N(0,c2)  with 

c = 0.1,0.5,1. Let κi
= (ε

i
,u

i
)'. Then, κi = Pηi , where ηi

= (η
1,i

,η
2,i

)' η j,i  i.i.d.N(0,1) and P = [pij ] , pij  i.i.d.N(0,1) . The errors e
ij
 and u

s
 are related as follows: 

εi = ρui + 1−ρ2 vi , (9)

where u and v are both i.i.d.N(0,1). We run experiments with p = 0.25, 0.5, 0.75.
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The 2SLSS estimator is computed for a grid of values of the tightness parameter s
n
. 

In particular we use the grid s
n
 = 0, 10, 103, 105. For s

n
 = 0 the 2SLSS and 2SLS 

are equivalent, therefore we do not report results for this case. Higher values of s
n 

correspond to stronger shrinkage. We consider two different shrinkage setups: one 
where we shrink towards q = 0 and one where we shrink towards q = 1 / Kn . The 
latter corresponds to the true value of the coefficients in the setup of the Monte 
Carlo. We have also considered shrinking towards 1/K

n
 with very similar results1 

to those for 1 / Kn  
giving us some comfort that the actual choice of the non-zero 

constant may not be crucial.

Results are reported in Tables 1-3. The tables display the relative mean squared 
error (RMSE) of each estimator with respect to the 2SLS estimator, i.e. the ratio 
between the mean quared error (MSE) of a given estimator and the MSE of the  
2SLS estimator. For the 2SLS estimator we do not report the ratio (as it will be 
equal to 1) but the MSE. The tables are organized so that on the rows are reported 
results for different numbers of observations n while on the columns are displayed 
results for different proportions of the number of instruments to the number of 
observations, i.e. K

n
/n. The tables are vertically divided in three subpanels providing 

results for the three cases c = 0.1, 0.5, 1.

In Tables 1-3 a figure smaller than 1 signals that the considered estimator is 
more efficient than 2SLS. As is clear, both the LIML and the B2SLS estimators 
substantially improve on the traditional 2SLS in all the cases in which K

n
 < n (with 

large n), while in the case n = K
n
 the LIML performs very poorly, and the B2SLS 

is by construction equivalent to 2SLS 2.

Turning our attention to the 2SLSS estimator, two main results are apparent. 
First, the 2SLSS features a systematically smaller MSE than both 2SLS and, to a 
smaller extent, LIML and B2SLS. Second, when both n and K

n
 are large the MSEs 

of 2SLSS with prior mean q = 1 / Kn  
become remarkably small.

Finally we focus on the case K
n
 > n. As for this case the competitor estimators 

are not implementable, we provide results only for the  2SLSS. Table 4 displays the 
MSEs of the 2SLSS estimator in the cases Kn / n = 1  

and Kn / n = 1.1, as well as 
their ratio. The ratios are systematically close to 1, showing that the 2SLSS estimator 
can handle the K

n
 > n case almost as efficiently as the case n = Kn .

These results confirm our theoretical findings and, further, show that using 
shrinkage in the first stage may significantly improve the small sample efficiency 
of the estimator. Our results for the case q = 1 / Kn  

suggest that shrinking the 
coefficients towards an appropriate direction might improve the results even further, 
possibly indicating that the consistency properties of this shrinkage estimator are 

1. These results are not reported but are available upon request. 

2. B2SLS and 2SLS are also equivalent to OLS when n = K
n
. The two equivalences  

are obvious once one notes that for n = K
n
, Y2n

' Zn (Zn
' Zn )−1 Zn

'Y2n = Y2n
' Y2n  

and  
Y2n

' Zn (Zn
' Zn )−1 Zn

' y1n = Y2n
' y1n

.
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TABLE 1

mean squared errors, p = 0.25

c=0.1 c=0.5 c=1
Kn/n→ 
n
→ 0.60 0.80 1.00 0.60 0.80 1.00 0.60 0.80 1.00

2SLS (level)
50 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01
100 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
200 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.01
400 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.01

B2SLS
50 4.58 12.2 1.00 2.78 7.13 1.00 1.63 4.82 1.00
100 2.01 6.71 1.00 1.57 3.28 1.00 1.24 1.72 1.00
200 1.09 1.84 1.00 1.01 1.53 1.00 0.82 1.18 1.00
400 0.62 0.96 1.00 0.58 0.81 1.00 0.53 0.67 1.00

LIML
50 11.5 25.5 114.3 9.88 27.8 112.6 2.63 18.4 166.1
100 3.00 13.4 142.5 1.87 7.10 164.4 1.35 4.30 217.2
200 1.09 6.26 159.8 1.01 2.24 191.1 0.81 1.32 310.7
400 0.59 1.00 166.9 0.57 0.82 238.2 0.52 0.66 315.1

2SLSS
q=1/n; s

n
= 10

50 0.90 0.84 0.80 0.91 0.86 0.80 0.94 0.88 0.84
100 0.89 0.86 0.80 0.90 0.85 0.79 0.93 0.87 0.80
200 0.91 0.87 0.83 0.92 0.88 0.81 0.93 0.88 0.81 
400 0.94 0.91 0.86 0.95 0.91 0.85 0.95 0.91 0.83 

q=1/n; s
n
= 103

50 0.98 0.87 0.81 1.12 1.03 0.85 1.65 1.39 1.27
100 0.66 0.57 0.45 0.79 0.62 0.53 1.08 0.83 0.70
200 0.43 0.34 0.29 0.50 0.40 0.32 0.67 0.51 0.41
400 0.31 0.27 0.25 0.36 0.30 0.27 0.46 0.37 0.32

q=1/n; s
n
= 105

50 1.04 0.94 0.90 1.22 1.17 0.97 2.11 2.02 1.69
100 0.71 0.62 0.50 0.90 0.73 0.64 1.46 1.16 1.00
200 0.46 0.36 0.29 0.59 0.45 0.35 0.96 0.74 0.59
400 0.26 0.20 0.16 0.33 0.26 0.20 0.57 0.42 0.31

q=0; s
n
= 10

50 0.96 0.90 0.87 0.96 0.92 0.85 0.97 0.91 0.87 
100 0.94 0.91 0.84 0.95 0.89 0.83 0.95 0.90 0.83 
200 0.95 0.91 0.86 0.95 0.91 0.84 0.95 0.90 0.82 
400 0.97 0.93 0.87 0.96 0.93 0.86 0.96 0.92 0.84 

q=0; s
n
= 103

50 1.05 0.96 0.88 1.06 0.96 0.87 1.08 0.95 0.90 
100 0.87 0.83 0.72 0.91 0.80 0.72 0.96 0.84 0.73 
200 0.77 0.69 0.62 0.77 0.69 0.60 0.81 0.69 0.59 
400 0.70 0.63 0.57 0.69 0.62 0.55 0.70 0.60 0.53 

q=0; s
n
= 105

50 1.06 0.97 0.90 1.08 0.98 0.88 1.10 0.97 0.92 
100 0.89 0.84 0.72 0.93 0.81 0.73 0.98 0.85 0.74 
200 0.77 0.67 0.60 0.77 0.68 0.59 0.81 0.69 0.59 
400 0.66 0.58 0.51 0.65 0.57 0.51 0.68 0.56 0.48 

note :  The Table displays the Relative Mean Squared Error (RMSE) of each estimator with respect to 
the 2SLS estimator,  i.e. the ratio between the Mean Squared Error (MSE) of a given estimator 
and the MSE of the 2SLS estimator. For the 2SLS estimator we do not report the ratio (as it will 
be equal to 1) but the MSE. On the rows are reported results for different numbers of observations 
n while on the columns are displayed results for different proportions of  the number of instruments 
to the number of observations, i.e. K

n
/n. Results are computed with p = 0.25
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TABLE 2

mean squared errors, p = 0.50

c=0.1 c=0.5 c=1
Kn/n→ 
n
→ 0.60 0.80 1.00 0.60 0.80 1.00 0.60 0.80 1.00

2SLS (level)
50 0.03 0.04 0.04 0.02 0.03 0.04 0.01 0.02 0.02 
100 0.02 0.03 0.04 0.02 0.03 0.03 0.01 0.02 0.02 
200 0.02 0.03 0.04 0.02 0.02 0.03 0.01 0.01 0.02 
400 0.02 0.03 0.04 0.02 0.02 0.03 0.01 0.01 0.02 

B2SLS
50 3.04 5.01 1.00 1.80 4.82 1.00 1.40 1.90 1.00
100 0.88 3.21 1.00 0.81 2.09 1.00 0.64 0.78 1.00
200 0.41 1.32 1.00 0.36 0.62 1.00 0.34 0.41 1.00
400 0.19 0.29 1.00 0.19 0.24 1.00 0.18 0.21 1.00

LIML
50 3.53 8.39 40.88 1.93 6.95 42.32 2.05 3.04 56.24 
100 0.73 3.07 43.58 0.65 1.64 51.43 0.62 1.00 65.69 
200 0.31 0.68 46.65 0.30 0.44 52.19 0.29 0.34 84.41 
400 0.15 0.22 43.83 0.15 0.19 56.17 0.15 0.16 81.71 

2SLSS
q=1/n; s

n
= 10

50 0.77 0.71 0.66 0.78 0.72 0.67 0.81 0.75 0.68 
100 0.82 0.78 0.73 0.83 0.78 0.72 0.85 0.79 0.72 
200 0.89 0.85 0.79 0.89 0.85 0.78 0.90 0.84 0.77 
400 0.93 0.90 0.84 0.93 0.90 0.83 0.94 0.90 0.82 

q=1/n; s
n
= 103

50 0.49 0.35 0.30 0.61 0.43 0.35 0.96 0.71 0.54 
100 0.27 0.20 0.16 0.32 0.22 0.19 0.49 0.34 0.27 
200 0.17 0.14 0.13 0.21 0.16 0.14 0.29 0.23 0.19 
400 0.18 0.17 0.17 0.21 0.19 0.18 0.27 0.24 0.21 

q=1/n; s
n
= 105

50 0.52 0.39 0.33 0.68 0.49 0.42 1.25 1.81 0.73 
100 0.29 0.21 0.18 0.37 0.25 0.20 0.66 0.46 0.37 
200 0.15 0.11 0.09 0.20 0.14 0.10 0.35 0.24 0.18 
400 0.07 0.05 0.04 0.10 0.07 0.05 0.18 0.12 0.09 

q=0; s
n
= 10

50 0.89 0.81 0.76 0.88 0.81 0.75 0.88 0.81 0.73 
100 0.90 0.85 0.79 0.90 0.84 0.77 0.90 0.83 0.75 
200 0.93 0.89 0.82 0.93 0.88 0.81 0.92 0.87 0.79 
400 0.96 0.93 0.86 0.96 0.92 0.85 0.95 0.91 0.83 

q=0; s
n
= 103

50 0.79 0.66 0.60 0.79 0.67 0.59 0.80 0.69 0.58 
100 0.68 0.60 0.53 0.67 0.58 0.52 0.69 0.58 0.49 
200 0.63 0.55 0.51 0.62 0.55 0.48 0.61 0.52 0.45 
400 0.63 0.56 0.52 0.61 0.54 0.50 0.59 0.51 0.45 

q=0; s
n
= 105

50 0.79 0.66 0.59 0.79 0.67 0.59 0.81 0.69 0.58 
100 0.67 0.59 0.52 0.67 0.57 0.50 0.68 0.57 0.48 
200 0.60 0.52 0.47 0.59 0.51 0.45 0.58 0.49 0.42 
400 0.56 0.49 0.45 0.54 0.47 0.43 0.52 0.44 0.38 

note :  The Table displays the Relative Mean Squared Error (RMSE) of each estimator with respect to 
the 2SLS estimator,  i.e. the ratio between the Mean Squared Error (MSE) of a given estimator 
and the MSE of the 2SLS estimator. For the 2SLS estimator we do not report the ratio (as it will 
be equal to 1) but the MSE. On the rows are reported results for different numbers of observations 
n while on the columns are displayed results for different proportions of  the number of instruments 
to the number of observations, i.e. K

n
/n. Results are computed with p = 0.50
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TABLE 3

mean squared errors, p = 0.75

c=0.1 c=0.5 c=1
Kn/n→ 
n
→ 0.60 0.80 1.00 0.60 0.80 1.00 0.60 0.80 1.00

2SLS (level)
50 0.05 0.07 0.09 0.04 0.05 0.07 0.02 0.03 0.05 
100 0.05 0.07 0.08 0.04 0.05 0.07 0.02 0.03 0.04 
200 0.05 0.07 0.08 0.04 0.05 0.07 0.02 0.03 0.04 
400 0.04 0.06 0.08 0.03 0.05 0.07 0.02 0.03 0.04 

B2SLS
50 1.97 3.68 1.00 1.25 2.46 1.00 0.77 1.83 1.00
100 0.55 1.34 1.00 0.53 1.93 1.00 0.37 0.47 1.00
200 0.22 0.61 1.00 0.20 0.33 1.00 0.18 0.21 1.00
400 0.10 0.17 1.00 0.09 0.14 1.00 0.09 0.11 1.00

LIML
50 0.63 3.65 18.17 0.91 1.82 20.90 0.50 0.80 29.56 
100 0.31 0.47 19.28 0.22 0.36 23.71 0.25 0.28 28.97 
200 0.12 0.15 19.78 0.11 0.13 22.01 0.12 0.11 38.13 
400 0.06 0.06 18.70 0.05 0.06 22.77 0.06 0.05 32.62 

2SLSS
q=1/n; s

n
= 10

50 0.70 0.66 0.62 0.72 0.67 0.62 0.75 0.68 0.62 
100 0.80 0.76 0.71 0.81 0.76 0.70 0.82 0.76 0.69 
200 0.88 0.84 0.78 0.88 0.84 0.77 0.89 0.83 0.75 
400 0.93 0.90 0.84 0.93 0.90 0.83 0.93 0.89 0.81 

q=1/n; s
n
= 103

50 0.28 0.19 0.16 0.32 0.25 0.18 0.90 0.39 0.28 
100 0.14 0.10 0.09 0.16 0.12 0.09 0.26 0.18 0.14 
200 0.10 0.09 0.09 0.12 0.11 0.10 0.18 0.15 0.13 
400 0.15 0.15 0.15 0.17 0.17 0.17 0.22 0.20 0.19 

q=1/n; s
n
= 105

50 0.31 0.22 0.18 0.37 0.29 0.22 0.97 0.78 0.45 
100 0.15 0.10 0.08 0.19 0.13 0.10 0.35 0.23 0.17 
200 0.07 0.05 0.04 0.09 0.06 0.05 0.17 0.11 0.08 
400 0.04 0.02 0.02 0.05 0.03 0.02 0.08 0.05 0.04 

q=0; s
n
= 10

50 0.85 0.79 0.72 0.85 0.78 0.71 0.84 0.76 0.68 
100 0.89 0.83 0.77 0.88 0.82 0.75 0.88 0.80 0.72 
200 0.93 0.88 0.82 0.93 0.87 0.80 0.92 0.86 0.77 
400 0.96 0.92 0.86 0.96 0.92 0.85 0.95 0.91 0.82 

q=0; s
n
= 103

50 0.65 0.58 0.51 0.66 0.56 0.49 0.66 0.55 0.47 
100 0.60 0.54 0.49 0.59 0.52 0.46 0.59 0.49 0.43 
200 0.59 0.53 0.49 0.58 0.51 0.46 0.56 0.48 0.42 
400 0.61 0.55 0.51 0.59 0.53 0.48 0.57 0.49 0.44 

q=0; s
n
= 105

50 0.65 0.57 0.50 0.65 0.55 0.48 0.66 0.54 0.46 
100 0.59 0.52 0.47 0.58 0.50 0.44 0.58 0.47 0.41 
200 0.55 0.49 0.45 0.54 0.47 0.42 0.52 0.44 0.38 
400 0.54 0.48 0.43 0.52 0.46 0.41 0.49 0.41 0.37 

note :  The Table displays the Relative Mean Squared Error (RMSE) of each estimator with respect to 
the 2SLS estimator,  i.e. the ratio between the Mean Squared Error (MSE) of a given estimator 
and the MSE of the 2SLS estimator. For the 2SLS estimator we do not report the ratio (as it will 
be equal to 1) but the MSE. On the rows are reported results for different numbers of observations 
n while on the columns are displayed results for different proportions of  the number of instruments 
to the number of observations, i.e. K

n
/n. Results are computed with p = 0.75
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different to those of the simple one analysed theoretically in the previous section. 
As we noted in remark 3 this is entirely possible since the relevant consistency 
condition (4) will be different for the two shrinkage estimators. This is a topic of 
interest for future work.

3. applIcatIon to angrIst-krueger (1991) dataset

In this Section we evaluate the properties of the 2SLSS estimator by using the 
Krueger (1991) dataset. This dataset has been repeatedly used when evaluating 
new IV related methods (see, e.g., Donald and Newey, 2001). The dataset is com-
posed of 329,509 observations on men born between 1930-1939 and is taken from 
the US Census. Angrist and Krueger (1991) estimate an equation where the dependent 

TABLE 4

mean squared errors of the 2slss. case K
n
 > n

p = 0.25 p = 0.50 p = 0.75
Kn/n→ 
n
→ 1 1.1 Ratio 1 1.1 Ratio 1 1.1 Ratio 

q=1/n s
n
= 10

50 0.011 0.011 1.018 0.024 0.025 0.960 0.044 0.048 0.913
100 0.008 0.009 0.953 0.024 0.024 0.979 0.048 0.051 0.955
200 0.007 0.008 0.923 0.024 0.025 0.941 0.051 0.054 0.946
400 0.007 0.007 0.972 0.025 0.026 0.984 0.056 0.058 0.959

q=1/n s
n
= 103

50 0.012 0.012 1.008 0.013 0.012 1.066 0.012 0.013 0.932
100 0.006 0.006 0.982 0.006 0.006 1.034 0.007 0.007 0.985
200 0.003 0.003 0.935 0.004 0.005 0.936 0.007 0.008 0.893
400 0.002 0.002 0.957 0.006 0.006 0.932 0.011 0.012 0.911

q=1/n s
n
= 105

50 0.014 0.014 0.986 0.015 0.014 1.063 0.015 0.016 0.936
100 0.007 0.007 0.971 0.007 0.007 1.030 0.007 0.007 1.015
200 0.003 0.003 0.970 0.003 0.003 0.970 0.003 0.003 1.031
400 0.002 0.002 1.000 0.002 0.002 1.000 0.002 0.002 1.133

q=0; s
n
= 10

50 0.012 0.012 1.017 0.027 0.028 0.961 0.050 0.054 0.921
100 0.009 0.009 0.956 0.025 0.026 0.984 0.052 0.054 0.959
200 0.007 0.008 0.925 0.025 0.026 0.943 0.053 0.056 0.950
400 0.007 0.007 0.972 0.026 0.026 0.985 0.057 0.059 0.960

q=0; s
n
= 103

50 0.012 0.012 1.042 0.022 0.022 0.977 0.035 0.038 0.913
100 0.007 0.008 0.949 0.017 0.017 1.000 0.032 0.033 0.967
200 0.005 0.006 0.914 0.015 0.016 0.937 0.031 0.033 0.939
400 0.005 0.005 0.978 0.015 0.016 0.968 0.033 0.034 0.948

q=0; s
n
= 105

50 0.013 0.012 1.041 0.021 0.022 0.977 0.034 0.037 0.914
100 0.008 0.008 0.949 0.017 0.016 1.012 0.031 0.032 0.968
200 0.005 0.006 0.929 0.014 0.015 0.939 0.028 0.030 0.943
400 0.004 0.004 0.976 0.013 0.013 0.977 0.028 0.029 0.955

note :  The table displays the MSE of the 2SLSS estimator in the cases K
n
/n = 1 and K

n
/n = 1.1, and 

their ratio (i.e. MSE in the case K
n
/n = 1 divided by MSE in the case K

n
/n = 1.1). The three 

verstical subpanels display results for p = 0.25,5,0.75. The parameter c is set to c = 0.5.
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variable is the log of the weekly wage, and the explanatory variable of interest, 
featuring endogeneity, is the number of years of schooling. They consider several 
models, differing in the set of exogenous explanatory variables which are included 
in the equation of interest. The particular version of the model we consider is the 
same selected also by Donald and Newey (2001), and is the one in which the 
exogenous explanatory variables include an intercept, 9 year-of-birth dummies, 
and 50 state-of-birth dummies (for a total of 60 variables). All the 60 exogenous 
explanatory variables are used as instruments. Additionally, the instrument set 
includes 3 quarter-of-birth dummies, 27 interactions of the 3 quarter-of-birth 
dummies with the 9 year-of-birth dummies, and 150 interactions of the 3 quarter-
of-birth dummies with the 50 state-of-birth dummies. This gives a total of 240 in -
struments. This particular model and dataset correspond to column 2 of Table VII 
in Angrist and Krueger (1991), and row 4 in Table VIII of Donald and Newey 
(2001). Using the whole sample, the 2SLS estimate of the coefficient on years of 
schooling is 0.0928, with a standard deviation of 0.0093. One interesting feature 
of this dataset is that the number of observations greatly exceeds the number of 
instruments. This implies that we are not faced with a relatively large number of 
instruments and therefore that standard methods such as 2SLS can be expected to 
perform reasonably well.

The above feature of this widely analysed dataset can be used to evaluate the 
performance of the 2SLSS against the traditional 2SLS estimator, in, what we view 
as, an innovative way. We propose the following approach. We draw from the 
complete dataset of 329,509 observations, a total of 600 subsamples of 500 obser-
vations each. Each subsample is composed of equally spaced observations of the 
randomly ordered complete sample3. If in some samples, some dummies are not 
active causing perfect multicollinearity they are removed. These 600 subsamples 
can be then used to estimate the coefficient of interest, and this will provide a 
distribution of estimates. If we knew the true value of the coefficient, this distri-
bution would provide us with an estimate of the bias, variance, and mean squared 
error (MSE) of the estimator used. As the dataset is composed of 329,509 obser-
vations, we can reasonably argue that the estimated coefficient of 0.0928 obtained, 
via 2SLS, using the whole sample is close enough to the truth to be considered a 
proxy for the actual coefficient. Therefore, we can compute an estimate of the MSE 
for all the estimators at hand by using the estimated distributions and assuming 
that the true value of the coefficient is 0.0928.

Results for this experiment are displayed in Table 5. The first row of the table 
reports the 2SLS estimate obtained using the whole sample, which is identical to 
the result reported in Angrist and Krueger (1991) and Donald and Newey (2001). 
The remaining rows report the estimated MSE, bias, variance, and standard deviation 

3. In particular we take observations spaced by 658 places, e.g. subsample 1 is composed by 
observations 1, 659, 1,317,..., 328,343, subsample 2 is composed by observations 2, 660, 1318,..., 
328,344, and so on until the last subsample considered which is composed by observations 600, 1258, 
1,916,..., 328,942.
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of the alternative estimators, computed by using the 600 subsamples of 500 obser-
vations. The estimators we consider are 2SLS, LIML, B2SLS, and 2SLSS (with 
several different values of the shrinkage parameter). As is clear from the table, 
2SLS seems superior to B2SLS and LIML in terms of MSE, and this is due to a 
much smaller bias4.

On the other hand, there are values of the shrinkage parameter s
n
 (e.g. 0.1, 

0.5 and 1) such that the MSE associated with 2SLSS is more than six times 
smaller that that of 2SLS, with gains coming both in the form of reduced bias 
and in reduced variance. Note that with this dataset a value of S

n
 between 0.1 

4. Note that this result is by no means driven by the fact that we are using the 2SLS estimates 
on the whole sample rather than the LIML or the B2SLS as a proxy for the true value of the coefficient. 
Indeed, although the LIML and B2SLS estimates using the whole sample are different from those of 
2SLS, the difference is both relatively small (LIML = 0.1064 and B2SLS = 0.1086) and implies even 
larger bias in the subsample estimates. 

TABLE 5

applIcatIon to angrIst krueger (1991) data

Coefficient Standard Error

2SLS  
all sample 

0.0928 0.0093 

Average 
Coefficient 

Mean  
Squared  
Error 

Bias Variance Standard 
Deviation

2SLS 0.0360 0.0045 –0.0568 0.0012 0.0350
LIML 0.0007 0.0085 –0.0922 0.0000 0.0052
B2SLS 0.0000 0.0086 –0.0928 0.0000 0.0003
S2SLS 
s

n
 = 0 0.0360 0.0045 –0.0568 0.0012 0.0350

s
n
 = 0.1 0.0736 0.0008 –0.0192 0.0004 0.0202

s
n
 = 0.5 0.0859 0.0007 –0.0069 0.0006 0.0246

s
n
 = 1 0.0956 0.0008 0.0027 0.0008 0.0285

s
n
 = 2 0.1095 0.0015 0.0167 0.0012 0.0346

s
n
 = 3 0.1204 0.0023 0.0276 0.0016 0.0398

s
n
 = 5 0.1379 0.0044 0.0451 0.0024 0.0486

s
n
 = 10 0.1707 0.0106 0.0779 0.0045 0.0672

s
n
 = 103 2.0872 7.8401 1.9943 3.8627 1.9654

s
n
 = s* 0.1450 0.0056 0.0522 0.0029 0.0537

note :  Average coef and the other statistics are computed by splitting the sample in 600 subsamples of 500 
observations each. The used instruments are 60 exogenous variables plus 3 quarter of birth dummy, 
plus 27 interactions of the 3 quarter of birth dummies with 9 year of birth dummies, plus 150 interactions 
of the 3 quarter of birth dummies with 50 state of birth dummies, for a total of 240 instruments. If in 
some samples some dummies are not active causing perfect multicollinearity they are removed.



79A SHRINKAGE INSTRUMENTAL VARIABLE ESTIMATOR FOR LARGE DATASETS

and 5 is reasonably large if one compares it with the scale of the data. To give 
a rough idea for this, we note that, for the present dataset, the trace of the matrix 
Z'Z is about 1,670,499, so that 1,670,499/(nK

n
) is roughly equal to 0.02. We 

conclude that for a reasonable set of values for the shrinkage parameter 2SLSS 
can perform as well and in some case much better than existing estimators. Only 
when the shrinkage parameter deviates considerably from reasonable values, 
as discussed above, is 2SLSS performing badly. We consider this result as 
suggestive of a considerable amount of robustness for 2SLSS with respect to 
this tuning parameter.

conclusIon

Estimation of structural equations using instrumental variable techniques, in 
the presence of a large number of, possibly weak, instruments, is a topic that has 
received substantial attention in the literature. Most work has focused on the 
properties of existing estimators in the case of many, possibly weak, instruments. 
These estimators include the 2SLS estimator and the LIML estimator.

This paper is part of a small literature that discusses estimators that can be of 
particular relevance when many instruments are available. Intuition and recent 
work (see, e.g., Hahn,2002) suggests that parsimonious devices used in the con-
struction of the final instruments may provide effective estimation strategies. 
Shrinkage is a well known approach that promotes parsimony. We consider a new 
shrinkage 2SLS estimator. We derive a consistency result for this estimator under 
general conditions, and, via both Monte Carlo simulations and an empirical appli-
cation, show that it has also good potential for inference in small samples.

An open and interesting question for future research relates to the choice of 
the shrinkage parameter, s

n
. It is of interest to develop a data-dependent way of 

determining this. An interesting possibility is to derive approximations of the MSE 
of the 2SLS shrinkage estimator and optimise the choice of s

n 
with respect to this 

measure, in the spirit of Donald and Newey (2001) We consider such an investigation 
to be the next step in our research agenda on this topic.
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by Lemma 2. Focusing on the first 

term we note that by Lemma 2 there exists a constant such that tr E PZn
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Thus, we have
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where the first inequality follows from Lemma 2. This concludes the proof of 
part (i) of Lemma 1. Part (ii) is proven similarly. Next, we move on to part (iii). 
We have

E
q

n
V

n
'P

Zn

snΠ
n

r
n

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

2

=

E
qn

2Πn
' Zn

' Zn(Zn
' Zn + snI)−1Zn

' VnVn
' Zn(Zn

' Zn + snI)−1Zn
' ZnΠn

rn2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

=



83A SHRINKAGE INSTRUMENTAL VARIABLE ESTIMATOR FOR LARGE DATASETS
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where the last but one inequality follows by the second part of assumption 1(iii) 
and the last by the first part of assumption 1(iii). Part (iv) can be proved similarly.
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where a
ii
 is the i,i-th element of A, α = imin λi (A) , β = imax λi (A)  
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Proof of Theorem 1
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