Abstracts
Résumé
L’érosion des sols est un risque naturel qui est exacerbé par les activités anthropiques en République démocratique du Congo. Cependant, il existe peu d’information sur la spatialisation de ce phénomène à l’échelle territoriale. Cette étude est basée sur l’utilisation du modèle USLE (Universal Soil Loss Equation) et des données en accès libre pour cartographier les zones à risque d’érosion et faire la priorisation des zones pour la conservation des sols dans le territoire d’Uvira. Au regard de résultats, 52,79 % du territoire est caractérisé par un risque d’érosion faible tandis que 47,21 % font face à un risque de perte de sol supérieure à la limite tolérable de 11 t/ha/an dans le contexte des paysages tropicaux et montagneux. Ce risque est accentué par la perte du couvert végétal au profit de l’extension des zones urbaines et agricoles. Le faible niveau de sensibilité à l’érosion se trouve au niveau de la plaine de la Ruzizi tandis que les zones situées dans les plateaux présentent une forte sensibilité en raison de leur relief accidenté et une pluviosité forte. L’analyse statistique des rapports de fréquence des glissements de terrain montre l’existence d’une relation entre leur occurrence et les zones d’intensité d’érosion. La modélisation de la perte de sol en fonction des différentes méthodes de protection de sol montre que l’approche de mise en place des bandes enherbées et l’aménagement des terrasses sont les plus appropriés pour réduire le risque d’érosion dans ce secteur. Ces méthodes peuvent être associées aux efforts d’afforestation pour une protection efficace des sols.
Mots-clés :
- érosion,
- SIG libre,
- aménagement du territoire,
- conservation des sols,
- République démocratique du Congo
Abstract
Soil erosion is among the natural hazards that are exacerbated by human activities in the Democratic Republic of Congo (DRC). However, there is little information on the spatialization of this phenomenon at the territorial level in the DRC. This study assesses the potential use of Geographic Information System (GIS) techniques and open access data to map areas at risk of erosion and prioritize areas for soil conservation in Uvira’s territory. In terms of results, 52.79% of this territory is characterized by a low risk of erosion with an average soil loss of 6.08 t ha-1 year-1 while 47.21% faces a risk of soil loss which excess the tolerable limit of 11 t ha-1 year-1 for highlands of tropical areas. This risk is accentuated by the loss of vegetation cover in profit of agricultural activities and urbanization. The low level of sensibility to erosion is found in the Ruzizi plain while the areas in the plateaus are highly susceptible due to their rugged terrain and high rainfall intensity. The statistical analysis of the frequency ratios of landslide shows the existence of a relationship between their occurrence and erosion intensity zones defined on the basis of the Universal Soil Loss Equation (USLE model). Soil loss modeling for different soil protection methods shows that the grassland banding and terracing approach are most appropriate to reduce the risk of erosion in this area. These methods can be combined with afforestation efforts for effective soil protection in Uvira.
Keywords:
- erosion,
- open GIS,
- spatial planning,
- soil conservation,
- Democratic Republic of Congo
Download the article in PDF to read it.
Download
Appendices
Remerciements
Nous remercions le USGS et la NASA pour les images satellitaires et le MNT-SRTM du secteur d’étude, l’ISRIC avec la base des données SOTERCAF 1.0 pour les données pédologiques et l’équipe de WordClim pour les données climatiques qu’ils ont mises gratuitement à la disposition du public et qui ont été nécessaires dans la réalisation de ce travail. Nous remercions également les deux lecteurs anonymes pour leurs commentaires qui ont permis d’améliorer la qualité de ce travail.
Bibliographie
- Adinarayana J, K.G. Rao, N.R. Krishna, P. Venkatachalam et J.K. Suri, 1999, A rule-based soil erosion model for a hilly catchment, Catena [en ligne], 37, pp. 309-318, DOI: https://doi.org/10.1016/S0341-8162(99)00023-5
- Alexandridis, T.K., A.M. Sotiropoulou, G. Bilas, N. Karapetsas et N.G.Silleos, 2014, The effects of seasonality in estimating the C-factor of soil erosion studies, Land Degradation and Development [en ligne], 16 p., DOI: https://doi.org/10.1002/ldr.2223
- Azanga, E., M. Majaliwa, F. Kansiime, N. Mushagalusa, K. Karume et M.M. Tenywa, 2016, Land-use and land cover, sediment and nutrient hotspot areas changes in Lake Tanganyika Basin, African Journal of Rural Development [en ligne], 1(1): 2016, pp. 75-90, DOI: https://doi.org/10.22004/ag.econ.263630
- Bakker, M.M., G. Govers, A.V. Doorn, F. Quetier, D. Chouvardas et M. Rounsevell, 2008, The response of soil erosion and sediment export to land use change in four areas of Europe: The importance of landscape pattern , Geomorphology [en ligne], Volume 98, Issues 3-4, 15 June 2008, pp. 213-226, DOI: https://doi.org/10.1016/j.geomorph.2006.12.027
- Bamutaze, Y., 2015, Revisiting socio-ecological resilience and sustainability in the coupled mountain landscapes in Eastern Africa, Curr. Opin. Environ. Sustain. [en ligne], 14, pp. 257-265, DOI : https://doi.org/10.1016/j.cosust.2015.06.010
- Batjes, H.B., 2007, SOTER-based soil parameter estimates for Central Africa-DR of Congo, Burundi and Rwanda (SOTWIScaf, version 1.0). Report 2007/02, ISRIC-Word Soil Information, Wageningen, [en ligne] URL: http://www.isric.org/isric/webdocs/docs/isric_report_2007_02.pdf
- Belayneh, M.,Yirgu, T. and Tsegaye. D., 2019, Potential soil erosion estimation and area prioritization for better conservation planning in Gumara watershed using RUSLE and GIS techniques, Environmental Systems Research [en ligne], 8:20, 17 p., DOI: https://doi.org/10.1186/s40068-019-0149-x
- Benavidez, R., Jackson, B., Maxwell, D., Norton, K., 2018, A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates, Hydrol. Earth Syst. Sci. [en ligne], 22, pp. 6059-6086, DOI : https://doi.org/10.5194/hess-22-6059-2018
- Bewket. W., Teferi, E., 2009, Assessment of soil erosion hazard and prioritization for treatment at the watershed level: case study in the Chemoga watershed, Blue Nile basin, Ethiopia, Land Degrad Devlop [en ligne], 20, pp. 609-622, DOI : https://doi.org/10.1002/ldr.944
- Butara S., 2012, Glissements de terrain et cause de leur déclenchement : cas de la cite d’Uvira et sa partie méridionale (Sud-kivu, RDC). Travail de fin d’étude Master.
- Claessens, L., Van Breugel, P., Notenbaert, A., Herrero, M., Van De Steeg, J., 2008, Mapping potential soil erosion in east Africa using the universal soil loss equation and secondary data, IAHS Publ. 2008, pp. 398-407.
- Datta, P.S, Schack H.K., 2010, Erosion Relevant Topographical Parameters Derived from Different DEMs—A Comparative Study from the Indian Lesser Himalayas, Remote Sensing [en ligne], 2, pp. 1941-1961, DOI : https://doi.org/10.3390/rs2081941
- de Figueiredo, T., Fonseca, F., 1997, Les sols, les processus d’érosion et l’utilisation de la terre en montagne au Nord-Est du Portugal: Approche cartographique sur quelques zones du Parc Naturel de Montesinho, Réseau Eros Bull, 17, pp. 205-217
- De Jong, S.M., 1994, Application of Reflective Remote Sensing for Land Degradation Studies in a Mediterranean Environment, Netherlands Geographical Studies, University of Utrecht.
- Desmet, P. Govers, G.A., 1996, GIS procedure for automatically calculating the ULSE LS factor on topographically complex landscape units, J. Soil Water Conserv,51, pp. 427-433.
- Durigon, V.L., Carvalho, D.F., Antunes, M.A.H., Oliveira, P.T.S., Fernandes, M.M., 2014, NDVI time series for monitoring RUSLE cover management factor in a tropical watershed, International Journal of Remote Sensing [en ligne], 35, pp. 441‑453, DOI : http://dx.doi.org/10.1080/01431161.2013.871081
- Fick, S.E. and Hijmans, R.J., 2017, Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas, International Journal of Climatology [en ligne], 37,12, October 2017, pp. 4302-4315, DOI : https://doi.org/10.1002/joc.5086
- Ganasri, B.P., Ramesh H., 2015, Assessment of soil erosion by RUSLE model using remote sensing and GIS - A case study of Nethravathi Basin, Geoscience Frontiers [en ligne], DOI : http://dx.doi.org/10.1016/j.gsf.2015.10.007
- Gashaw, T., Tulu, T. et Argaw, M., 2017, Erosion risk assessment for prioritization of conservation measures in Geleda watershed, Blue Nile basin, Ethiopia, Environmental Systems Research [en ligne], 6:1, 14 p., DOI : https://doi.org/10.1186/s40068-016-0078-x
- Guth, P.L., 2010, Geomorphometric comparison of ASTER GDEM and SRTM, Symposium of ISPRS Technical Commission IV & AutoCarto, November 15-19, 2010 Orlando, Florida, pp. 15-19, [En ligne] URL: http://www.isprs.org/proceedings/XXXVIII/part4/files/Guth.pdf
- Huang, F., Chen, J., Du, Z., Yao, C., Huang, J., Jiang, Q., Chang, Z. and Li, S., 2020, Landslide Susceptibility Prediction Considering Regional Soil Erosion Based on Machine-Learning Model, ISPRS Int. J. Geo-Inf. [en ligne], 9, 377, DOI : https://doi.org/10.3390/ijgi9060377
- Hurni H., 1985, Erosion-productivity-conservation systems in Ethiopia. In: Paper presented at the 4th international conference on soil conservation, 3-9 Nov. 1985, Maracacy, Venezuela
- Hurni, H., 1985, An Ecosystem Approach to Soil Conservation. In Soil Erosion and Conservation; Swaify, E.L., Samir, A., Moldenhauer, W.C., Eds.; Soil Conservation Society of America: Ankeny, IA, USA, 1985, 73, pp. 759-771.
- Ilunga L., 1991, Morphologie, volcanisme et sédimentation dans le rift du Sud-Kivu, Bulletin de la Société Géographique de Liège, 27, pp. 209-228
- Ilunga L., 2006, Etude des sites majeurs d’érosion à Uvira (R.D. Congo), Geo-Eco-Trop, 2006, 30.2, pp. 1-12
- Ilunga, L. et Alexandre, J., 1982, La géomorphologie de la plaine de la Ruzizi. Analyse et cartographie, Geo-Eco-Trop, 6,2, pp. 105-123
- Karamage, F., Shao, H., Chen, X, Ndayisaba, F., Nahayo, L., Kayiranga, A., Kehinde, O.J., Liu, T. and Zhang, C., 2016, Deforestation Effects on Soil Erosion in the Lake Kivu Basin, D.R. Congo-Rwanda, Forests [en ligne], 7, 281, 17 p. , DOI : https://doi.org/10.3390/f7110281
- Karamage, F., Zhang, C., Liu, T., Maganda, A. and Isabwe, A., 2017, Soil Erosion Risk Assessment in Uganda, Forests [en ligne], 8, 52, DOI : https://doi.org/10.3390/f8020052
- Khosrokhani M. Pradhan B., 2014, Spatio-temporal assessment of soil erosion at Kuala Lumpur metropolitan city using remote sensing data and GIS, Geomatics, Natural Hazards and Risk [en ligne], 5:3, pp. 252-270, DOI : https://doi.org/10.1080/19475705.2013.794164
- Le Van, B., Truong, P.M., An Tran Thi, Raghavan, V., 2014, An open source GIS approach for soil erosion modeling in danang city, vietnam, International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences 2014, 8 p.
- Lee S., 2004, Soil erosion assessment and its verification using the Universal Soil Loss Equation and Geographic Information System: a case study at Boun, Korea, Environmental Geology [en ligne], 45, pp. 457-465, DOI : https://doi.org/10.1007/s00254-003-0897-8
- Lo, A., El-Swaify, S.A., Dangler, E.W., Shinshiro, L., 1985, Effectiveness of El30 as an erosivity index in Hawaii, dans: Soil Erosion and Conservation; E1-Swaify, S.A., Moldenhauer, W.C., Lo, A., Eds.; Soil Conservation Society of America: Ankeny, IA, USA, 1985; pp. 384-392.
- McCool, D., Brown, L., Foster, G., Mutchler, C., Meyer, L., 1987, Revised slope steepness factor for the universal soil loss equation, Trans. ASAE 1987, 30, pp. 1387-1396.
- Molnar, D. and Julien, P., 1998, Estimation of upland erosion using GIS, Comput. Geosci. 1998, 24, pp. 183-192.
- Morgan, R.P.C., 2009, Soil Erosion and Conservation; John Wiley & Sons: Hoboken, NJ, USA, 2009.
- Nachtergaele, F., Petri, M., Biancalani, R., Van Lynden. G., Van Velthuizen, H., Bloise, M., 2010, Global Land Degradation Information System (Gladis); Beta Version. An Information Database for Land Degradation Assessment at Global Level. Land Degradation Assessment in Drylands Technical Report; Food and Agriculture Organization of the United Nations (FAO), 2010; Volume 17, [en ligne] URL: http://www.fao.org/nr/lada/index.php?option=com_docman&task=doc_download&gid=773&Itemid=165&lang=en, consulté le 17 juin 2015.
- Ndolo G.P., 2015, GIS-based soil erosion modeling and sediment yield of the N’djili river basin, Democratic Republic of Congo, Master degree thesis, Degree of Master of Science, Colorado State University, Fort Collins, Colorado, Summer 2015, 220 p.
- Ngumbu, K., 2004, Contribution à l’inventaire systématique des oiseaux aquatiques dans les villes de Bukavu et Uvira, Sud-Kivu, mémoire, Inédit, Faculté des sciences, Département de Biologie, UOB, Bukavu, RDC
- Nguyen T. H., 1996, Determining the causing factors for soil erosion and the potential for predicting soil erosion in slope area, PhD. thesis, Thuy Loi University, Hanoi.
- Oliveira, J.D.A., Dominguez, J.M.L., Nearing, M.A., Oliveira, P.T., 2015, A GIS-based procedure for automatically calculating soil loss from the universal soil loss equation Gisus-m., Appl. Eng. Agric. [en ligne], 31, 907, DOI : https://doi.org/10.13031/aea.31.11093
- Oliveira, P.T.S., Rodrigues, D.B.B., Sobrinho A., T., Panachuki, E, Wendland, E., 2013, Use of SRTM data to calculate the (R)USLE topographic factor, Acta Scientiarum. Technology [en ligne], 15, pp. 507‑513, DOI : https://doi.org/10.4025/actascitechnol.v35i3.15792
- Ongezo, M. S, Norbert, J., Mtalo, F. and Ndomba P.M., 2014, Sediment yields estimation and sources identification in Lake Tanganyika basin- the case of Mulongwe sub catchment - Uvira city - DR Congo, Standard Global Journal of Geology and Explorational Research, 1(2), pp. 032- 042.
- Panagos P., Borrelli P. and Meusburger K., 2015, A New European Slope Length and Steepness Factor (LS-Factor) for Modeling Soil Erosion by Water, Geosciences [en ligne], 5, pp. 117-126, DOI : https://doi.org/10.3390/geosciences5020117
- Payet E., P. Dumas et G. Pennober, 2011, Modélisation de l’érosion hydrique des sols sur un bassin versant du sud-ouest de Madagascar, le Fiherenana, VertigO - la revue électronique en sciences de l'environnement [En ligne], Volume 11 Numéro 3 | décembre 2011, URL : http://journals.openedition.org/vertigo/12591; DOI : https://doi.org/10.4000/vertigo.12591, Consulté le 18 juin 2019
- Pradhan, B., A. Chaudhari, J. Adinarayana et M. F. Buchroithner, 2012, Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: a case study at Penang Island, Malaysia, Environ Monit Assess [en ligne], 184, pp. 715-727, DOI : https://doi.org/10.1007/s10661-011-1996-8
- Renard, K.G., J.R. Freimund, 1994, Using monthly precipitation data to estimate the R factor in the revised USLE, Journal of Hydrology, 157(1), pp. 287-306.
- Roose, E., 1977, Érosion et Ruissellement en Afrique de l’ouest--vingt années de mesures en petites parcelles expérimentales. Travaux et Documents de I'ORSTOM No. 78, ORSTOM, Paris
- Sarathi, B. S., P. Pani, 2015, Estimation of soil erosion using RUSLE and GIS techniques: a case study of Barakar River basin, Jharkhand, India, Model. Earth Syst. Environ. 2015, 1:42, 13 p., DOI: 10.1007/s40808-015-0040-3
- Shin G., 1999, The Analysis of Soil Erosion Analysis in Watershed Using Gis. Ph.D. Dissertation, Department of Civil Engineering, Gang-Won National University, Chuncheon, Korea, 1999
- Singh, S., and Kumar, P.R., 2017, Grid-cell based assessment of soil erosion potential for identification of critical erosion prone areas using USLE, GIS and remote sensing: A casestudy in the Kapgari watershed, India, International Soil and Water Conservation Research [En ligne], 5, pp. 202-211, DOI : https://doi.org/10.1016/j.iswcr.2017.05.006
- Tadesse, L., K.V. Suryabhagavan, G. Sridhar et G. Legesse, 2017, Land use and land cover changes and Soil erosion in Yezat Watershed, North Western Ethiopia, International Soil and Water Conservation Research [En ligne], pp. 85-94., DOI: https://doi.org/10.1016/j.iswcr.2017.05.004
- Tamene, L., Z. Adimassu, E. Aynekulu et T. Yaekob, 2017, Estimating landscape susceptibility to soil erosion using a GIS-based approach in Northern Ethiopia, International Soil and Water Conservation Research [En ligne], 5, pp. 221-230, DOI: http://dx.doi.org/10.1016/j.iswcr.2017.05.002
- Tshikeba, K.M., Muamba, T.R., Onema K.J-M., Gumindoga, W., and Tshimpampa, B.J., 2018, A GIS-based estimation of soil erosion parameters for soil loss potential and erosion hazard in the city of Kinshasa, the Democratic Republic of Congo, Proc. IAHS, 378, pp. 51-57, DOI : https://doi.org/10.5194/piahs-378-51-2018
- Van der Knijff, J. M., R.J.A. Jones et L. Montanarella, 2000, Soil Erosion Risk Assessment in Europe, [En ligne] URL: https://www.unisdr.org/files/1581_ereurnew2.pdf, consulté le 21 novembre 2018.
- Williams, J., 1995, The EPIC model, in Computer Models of Watershed Hydrology, edited by V. P. Singh, Colorado, USA, pp. 909-1000
- Wischmeier, W. H., D.D. Smith, 1978, Predicting Rainfall Erosion Losses - À Guide to Conservation Planning. U.S. Department of Agriculture Handbook No. 537. Washington, DC: USDA.
- Wu, S., J. Li et G. Huang, 2005, An evaluation of grid size uncertainty in empirical soil loss modeling with digital elevation models, Environ. Model. Assess. [En ligne], 10, pp. 33-42, DOI : https://doi.org/10.1007/s10666-004-6595-4