Abstracts
Résumé
Objectifs Malgré l’existence de plusieurs traitements en ligne pour les personnes avec un trouble de stress posttraumatique (TSPT), peu d’études se sont penchées sur les données d’utilisation d’une telle intervention. Étant donné le potentiel de la modalité en ligne à pallier les obstacles limitant l’accès à l’aide psychologique, il importe de documenter les interactions des usagers avec ces outils en lien avec l’amélioration des symptômes ciblés. L’objectif de cette étude est de documenter les données d’utilisation de la plateforme de traitement en ligne RESILIENT par les personnes évacuées des feux de Fort McMurray, Alberta (Canada), et d’examiner leur association avec l’efficacité du traitement sur les symptômes de trouble de stress posttraumatique (TSPT), d’insomnie et de dépression, et l’adhésion au traitement, mesurée par le nombre de modules consultés par les participants.
Méthode Quatre-vingt-dix-sept personnes évacuées des feux de Fort McMurray présentant des symptômes de TSPT, d’insomnie et de dépression sont incluses dans la présente étude. Les participants étaient invités à utiliser la plateforme RESILIENT, un autotraitement en ligne guidé par un thérapeute qui cible les symptômes de TSPT, le sommeil et l’humeur, et comprend 12 modules offrant des stratégies de thérapies cognitives et comportementales (TCC) basées sur les données probantes. Des données d’utilisation objectives (p. ex. nombre de modules consultés) et subjectives (p. ex. niveau d’efforts investis) ont été recueillies.
Résultats Afin de prédire la réduction des symptômes de TSPT, de dépression et d’insomnie, ainsi que le nombre de modules consultés par les participants, des modèles de régressions séquentielles ont été effectués, avec un contrôle statistique pour les symptômes prétraitement, l’âge et le genre. Les modèles finaux ont révélé qu’une réduction des symptômes de TSPT, de dépression et d’insomnie était prédite significativement par le nombre de modules consultés (β = - 0,41 ; - 0,53 ; - 0,49 respectivement, tous p < 0,001) ainsi que par le niveau d’efforts moyen autorapporté au module 7 (mi-parcours) (β = - 0,43 ; p < 0,001 ; β = - 0,38 ; p = 0,005 et β = - 0,36 ; p = 0,007 respectivement). Le nombre de modules consultés, par ailleurs, était prédit significativement par le nombre de mots dans le 4e module (β = 0,34 ; p < 0,001) et dans le 7e module (β = 0,44 ; p < 0,001), ainsi que par le nombre d’entrées dans le journal du sommeil (β = 0,28 ; p < 0,001).
Conclusion Les résultats ont confirmé qu’une plus grande interaction avec la plateforme influence positivement l’efficacité du traitement et qu’une utilisation accrue en début de traitement semble être un bon prédicteur de l’achèvement de celui-ci. Cette étude confirme l’importance de soutenir l’engagement des participants envers le traitement en ligne afin d’optimiser son efficacité.
Mots-clés :
- données d’utilisation,
- traitement en ligne,
- adhésion,
- trouble de stress posttraumatique,
- insomnie,
- dépression
Abstract
Objectives Despite the existence of several online treatments for people with posttraumatic stress disorder (PTSD), few studies have examined usage data for such interventions. Given the potential of the online modality to alleviate barriers limiting access to psychological help, it is important to document users’ interactions with these tools in relation to the improvement of targeted symptoms. The objective of this study is to document usage data of the online treatment platform RESILIENT by people evacuated from the Fort McMurray, Alberta (Canada) fires, and to examine their association with the effectiveness of treatment on symptoms of posttraumatic stress disorder (PTSD), insomnia and depression, and adherence to treatment, as measured by the number of modules accessed by participants.
Methods Ninety-seven people evacuated from the Fort McMurray fires with symptoms of PTSD, insomnia and depression were included in this study. Participants were invited to use the RESILIENT platform, an online therapist-assisted self-help treatment program that targets PTSD symptoms, sleep and mood, and includes 12 modules offering evidence-based cognitive-behavioural therapy (CBT) strategies. Both objective (e.g., number of modules accessed) and subjective (e.g., level of effort invested) usage data were collected.
Results In order to predict the reduction in PTSD, depression and insomnia symptoms, as well as the number of modules accessed by participants, sequential regression models were conducted, with statistical control for pretreatment symptoms, age and gender. The final models revealed that a reduction in PTSD, depression and insomnia symptoms was significantly predicted by the number of modules accessed (β = -.41; -.53; -.49 respectively, all p <.001) as well as the mean self-reported level of effort at module 7 (midway) (β = -.43; p <.001; β = -.38; p = .005 and β = -.36; p = .007 respectively). The number of modules accessed, on the other hand, was significantly predicted by the number of words in the 4th module (β = .34; p <.001) and 7th module (β = .44; p <.001) and the number of sleep diary entries (β = .28; p <.001).
Conclusion These results confirmed that increased interaction with the platform positively influences treatment effectiveness and that increased use at the beginning of treatment appears to be a good predictor of treatment completion. This study confirms the importance of sustaining participants’ commitment to online treatment in order to optimize its effectiveness.
Keywords:
- usage data,
- online treatment,
- adherence,
- posttraumatic stress disorder,
- insomnia,
- depression
Appendices
Bibliographie
- Andrews, G., Basu, A., Cuijpers, P., Craske, M. G., McEvoy, P., English, C. L. et Newby, J. M. (2018). Computer therapy for the anxiety and depression disorders is effective, acceptable and practical health care : An updated meta-analysis. Journal of Anxiety Disorders, 55, 70-78. https://doi.org/10.1016/j.janxdis.2018.01.001
- Al-Asadi, A. M., Klein, B. et Meyer, D. (2014). Pretreatment attrition and formal withdrawal during treatment and their predictors : an exploratory study of the anxiety online data. Journal of medical Internet research, 16(6), e152. https://doi.org/10.2196/jmir.2989
- Alkhaldi, G., Hamilton, F. L., Lau, R., Webster, R., Michie, S. et Murray, E. (2016). The effectiveness of prompts to promote engagement with digital interventions : a systematic review. Journal of Medical Internet Research, 18(1), 6. https://doi.org/10.2196/jmir.4790
- Andersson, G., Carlbring, P., Titov, N. et Lindefors, N. (2019). Internet interventions for adults with anxiety and mood disorders : a narrative umbrella review of recent meta-analyses. Canadian Journal of Psychiatry, 64(7), 465-470. https://doi.org/10.1177/0706743719839381
- Andersson, G. et Titov, N. (2014). Advantages and limitations of Internet-based interventions for common mental disorders. World psychiatry : official journal of the World Psychiatric Association (WPA), 13(1), 4-11. https://doi.org/10.1002/wps.20083
- Barak, A., Hen, L., Boniel-Nissim, M. et Shapira, N. (2008) A comprehensive review and a meta-analysis of the effectiveness of Internet-based psychotherapeutic interventions. Journal of Technology in Human Services, 26(2-4), 109-160, https://doi.org/10.1080/15228830802094429
- Bastien, C. H., Vallières, A. et Morin, C. M.(2001). Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med, 2(4), 297-307.
- Baumel, A., Muench, F., Edan, S. et Kane, J. M. (2019). Objective user engagement with mental health apps : Systematic search and panel-based usage analysis. Journal of Medical Internet Research, 21(9). https://doi.org/10.2196/14567
- Beatty, L. et Binnion, C. (2016). A systematic review of predictors of, and reasons for, adherence to online psychological interventions. International Journal of Behavioral Medicine, 23(6), 776-794. https://doi.org/10.1007/s12529-016-9556-9
- Beintner, I. et Jacobi, C. (2019). Impact of telephone prompts on the adherence to an Internet-based aftercare program for women with bulimia nervosa : A secondary analysis of data from a randomized controlled trial. Internet Interventions, 15, 100-104. https://doi.org/10.1016/j.invent.2017.11.001
- Békés, V., Belleville, G., Lebel. J., Ouellet, M.-C., Morin, C. M., Bergeron, N., Campbell, T., Bouchard, S., Guay, S. et MacMaster, F. (2020). L’expérience des thérapeutes concernant un autotraitement guidé en ligne visant à promouvoir la résilience après une catastrophe naturelle. Revue Francophone de Clinique Comportementale et Cognitive. 25(1), 103-119.
- Belleville, G., Ouellet, M. C. et Morin, C. M. (2019). Post-Traumatic Stress among Evacuees from the 2016 Fort McMurray Wildfires : Exploration of Psychological and Sleep Symptoms Three Months after the Evacuation. Int J Environ Res Public Health, 16(9) :1604. doi : 10.3390/ijerph16091604
- Belleville, G. et coll. (2019), RESILIENT–An online multidimensional treatment to promote resilience after a disaster : Preliminary results from a randomized controlled trial, in CYPSY24 : 24th Annual CyberPsychology, CyberTherapy et Social Networking Conference. Norfolk, États-Unis.
- Chen, H., Rodriguez, M., Qian, M., Kishimoto, T., Lin, M. et Berger, T. (2020). Predictors of treatment outcomes and adherence in internet-based cognitive behavioral therapy for social anxiety in China. Behavioural and Cognitive Psychotherapy, 48(3), 291-303. doi :10.1017/S1352465819000730
- Commission de la santé mentale au Canada. (2014). La cybersanté mentale au Canada : Transformer le système de santé mentale à l’aide de la technologie. https://www.mentalhealthcommission.ca/sites/default/files/2016-11/MHCC_E-Mental_Health-Briefing_Document_fr.pdf.pdf
- Cuijpers, P., Noma, H., Karyotaki, E., Cipriani, A. et Furukawa, T. A. (2019). Effectiveness and Acceptability of Cognitive Behavior Therapy Delivery Formats in Adults With Depression : A Network Meta-analysis. JAMA Psychiatry, 76(7) :700-707. doi : 10.1001/jamapsychiatry.2019.0268. Erratum in : JAMA Psychiatry. 2019 Jul 17.
- Donkin, L., Christensen, H., Naismith, S. L., Neal, B., Hickie, I. B. et Glozier, N. (2011). A Systematic Review of the Impact of Adherence on the Effectiveness of e-Therapies. Journal of medical internet research. Journal of Medical Internet Research, 13(3). https://doi.org/10.2196/jmir.1772
- El Alaoui, S., Ljótsson, B., Hedman, E., Kaldo, V., Andersson, E., Rück, C., Andersson, G. et Lindefors, N. (2015). Predictors of Symptomatic Change and Adherence in Internet-Based Cognitive Behaviour Therapy for Social Anxiety Disorder in Routine Psychiatric Care. PloS one, 10(4), e0124258. https://doi.org/10.1371/journal.pone.0124258
- Fleming, T., Bavin, L., Lucassen, M., Stasiak, K., Hopkins, S. et Merry, S. (2018). Beyond the Trial : Systematic Review of Real-World Uptake and Engagement With Digital Self-Help Interventions for Depression, Low Mood, or Anxiety. Journal of medical Internet research, 20(6), e199. https://doi.org/10.2196/jmir.9275
- Fry, J. P. et Neff, R. A. (2009). Periodic prompts and reminders in health promotion and health behavior interventions : systematic review. Journal of Medical Internet Research, 11(2), 16. https://doi.org/10.2196/jmir.1138
- Fuhr, K., Schröder, J., Berger, T., Moritz, S., Meyer, B., Lutz, W., Hohagen, F., Hautzinger, M. et Klein, J. P. (2018). The association between adherence and outcome in an Internet intervention for depression. Journal of affective disorders, 229, 443-449. https://doi.org/10.1016/j.jad.2017.12.028
- Government of Alberta (2016). Home Again : Recovery after the Wood Buffalo Wildfire. https://open.alberta.ca/publications/9781460131350
- Hilvert-Bruce, Z., Rossouw, P. J., Wong, N., Sunderland, M. et Andrews, G. (2012). Adherence as a determinant of effectiveness of internet cognitive behavioural therapy for anxiety and depressive disorders. Behaviour Research and Therapy, 50, 463-468. https://doi.org/10.1016/j.brat.2012.04.001
- Karyotaki, E., Riper, H., Twisk, J., Hoogendoorn, A., Kleiboer, A., Mira, A., Mackinnon, A., Meyer, B., Botella, C., Littlewood, E., Andersson, G., Christensen, H., Klein, J. P., Schröder, J., Bretón-López, J., Scheider, J., Griffiths, K., Farrer, L., Huibers, M. J., Phillips, R., … Cuijpers, P. (2017). Efficacy of Self-guided Internet-Based Cognitive Behavioral Therapy in the Treatment of Depressive Symptoms : A Meta-analysis of Individual Participant Data. JAMA psychiatry, 74(4), 351-359. https://doi.org/10.1001/jamapsychiatry.2017.0044
- Kelders, S. M., Kok, R. N., Ossebaard, H. C. et Van Gemert-Pijnen, J. E. (2012). Persuasive system design does matter : a systematic review of adherence to web-based interventions. Journal of Medical Internet Research, 14(6), 152. https://doi.org/10.2196/jmir.2104
- Kroenke, K., Spitzer, R.L. et Williams, J. B. (2001). The PHQ-9 : validity of a brief depression severity measure. J Gen Intern Med, 16(9), 606-613.
- Kumar, V., Sattar, Y., Bseiso, A., Khan, S. et Rutkofsky, I. H. (2017). The effectiveness of internet-based cognitive behavioral therapy in treatment of psychiatric disorders. Cureus, 9(8), 1626. https://doi.org/10.7759/cureus.1626
- Lancee, J., van den Bout, J., Sorbi, M. J. et van Straten, A. (2013). Motivational support provided via email improves the effectiveness of internet-delivered self-help treatment for insomnia : a randomized trial. Behaviour research and therapy, 51(12), 797-805. https://doi-org.acces.bibl.ulaval.ca/10.1016/j.brat.2013.09.004
- Linde, K., Sigterman, K., Kriston, L., Rücker, G., Jamil, S., Meissner, K. et Schneider, A. (2015). Effectiveness of psychological treatments for depressive disorders in primary care : systematic review and meta-analysis. Annals of family medicine, 13(1), 56-68. https://doi.org/10.1370/afm.1719
- Lindsäter, E., Axelsson, E., Salomonsson, S., Santoft, F., Ljótsson, B., Åkerstedt, T., Lekander, M. et Hedman-Lagerlöf, E. (2019). Cost-effectiveness of therapist-guided Internet-based cognitive behavioral therapy for stress-related disorders : Secondary analysis of a randomized controlled trial. Journal of Medical Internet Research, 21(9). https://doi.org/10.2196/14675
- McMillan, D., Gilbody, S. et Richards, D. (2010). Defining successful treatment outcome in depression using the PHQ-9 : a comparison of methods. J Affect Disord, 127(1-3) :122-129. doi : 10.1016/j.jad.2010.04.030
- Melville, K. M., Casey, L. M. et Kavanagh, D. J. (2010). Dropout from Internet-based treatment for psychological disorders. The British Journal of Clinical Psychology, 49(4), 455-471. https://doi.org/10.1348/014466509X472138
- Morin, C.M., et coll. (2011). The Insomnia Severity Index : psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep, 34(5), 601-608.
- Oinas-Kukkonen, H. et Harjumaa, M. (2009). Persuasive systems design : key issues, process model, and system features. Communications of the Association for Information Systems, 24(1), 28. https://doi.org/10.17705/1CAIS.02428
- Peñate, W. et Fumero, A. (2016). A meta-review of Internet computer-based psychological treatments for anxiety disorders. Journal of Telemedicine and Telecare, 22. https://doi.org/10.1177/1357633X15586491
- Postel, M. G., de Haan, H. A., ter Huurne, E. D., Becker, E. S. et de Jong, C. A. (2010). Effectiveness of a web-based intervention for problem drinkers and reasons for dropout : randomized controlled trial. Journal of medical Internet research, 12(4), e68. https://doi.org/10.2196/jmir.1642
- Prochaska, J. O., Velicer, W. F., DiClemente, C. C. et Fava, J. (1988). Measuring processes of change : Applications to the cessation of smoking. Journal of Consulting and Clinical Psychology, 56(4), 520-528. https://doi.org/10.1037/0022-006X.56.4.520
- Rost, T., Stein, J., Löbner, M., Kersting, A., Luck-Sikorski, C. et Riedel-Heller, S. G. (2017). User acceptance of computerized cognitive behavioral therapy for depression : systematic review. Journal of Medical Internet Research, 19(9). https://doi.org/10.2196/jmir.7662
- Sieverink, F., Kelders, S. M. et van Gemert-Pijnen, J. E. (2017). Clarifying the Concept of Adherence to eHealth Technology : Systematic Review on When Usage Becomes Adherence. Journal of medical Internet research, 19(12), e402. https://doi.org/10.2196/jmir.8578
- Simblett, S., Birch, J., Matcham, F., Yaguez, L. et Morris, R. (2017). A systematic review and meta-analysis of e-mental health interventions to treat symptoms of posttraumatic stress. JMIR Mental Health, 4(2). https://doi.org/mental.5558
- Simco, R., McCusker, J. et Sewitch, M. (2014). Adherence to self-care interventions for depression or anxiety : A systematic review. Health Education Journal, 73(6), 714-730. https://doi.org/10.1177/0017896913514738
- Simon, N., McGillivray, L., Roberts, N. P., Barawi, K., Lewis, C. E. et Bisson, J. I. (2019). Acceptability of internet-based cognitive behavioural therapy (i-CBT) for post-traumatic stress disorder (PTSD) : a systematic review. European Journal of Psychotraumatology, 10(1). https://doi.org/10.1080/20008198.2019.1646092
- Titov, N., Dear, B. F., Johnston, L., Lorian, C., Zou, J., Wootton, B., Spence, J., McEvoy, P. M. et Rapee, R. M. (2013). Improving adherence and clinical outcomes in self-guided internet treatment for anxiety and depression : randomised controlled trial. PloS one, 8(7), e62873. https://doi.org/10.1371/journal.pone.0062873
- Wangberg, S., Bergmo, T. et Johnsen, J.-A. (2008). Adherence in Internet-based interventions. Patient preference and adherence, 2, 57-65. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2770402/
- Weathers, F. W., Litz, B. T., Keane, T. M., Palmieri, P. A., Marx, B. P. et Schnurr, P. P. (2013). The PTSD Checklist for DSM-5 (PCL-5). Scale available from the National Center for PTSD at www.ptsd.va.gov.
- Wright, J. H., Owen, J. J., Richards, D., Eells, T. D., Richardson, T., Brown, G. K., Barrett, M., Rasku, M. A., Polser, G. et Thase, M. E. (2019). Computer-assisted cognitive-behavior therapy for depression : a systematic review and meta-analysis. The Journal of Clinical Psychiatry, 80(2), 18r12188. https://doi.org/10.4088/JCP.18r12188
- Yang, M., Morin, C. M., Schaefer, K.et Wallenstein, G. V. (2009). Interpreting score differences in the Insomnia Severity Index : using health-related outcomes to define the minimally important difference. Curr Med Res Opin, 25(10), 2487-94. doi : 10.1185/03007990903167415