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ABSTRACT

The calculation of Chezy’s resistance coefficient (CRC) is 
typically not provided a priori in a design problem, and its value 
is often selected subjectively from the literature in most open 
channels and conduits for the uniform flow. The evaluation of 
this coefficient is crucial to channel design and for computing 
its normal depth. The primary purpose of this research study 
is to revisit the mathematical formulation for the resistance 
coefficient. A general explicit relation of the resistance 
coefficient in turbulent flow is set with different geometric 
profiles of conduits and channels, mainly the horseshoe-
shaped tunnel using the rough model method (RMM). CRC 
is firmly based on the internal walls' absolute roughness of the 
channel, the liquid kinematic viscosity, the longitudinal slope, 
the discharge and the filling rate. Additionally, a simplified 
method is proposed to determine CRC with a restricted 
number of variables such as the kinematic viscosity, the 
absolute roughness, the slope of the conduit, and the discharge. 
Based on studying the variation of CRC as a function of the 
filling rate, another explicit expression is provided to compute 
this coefficient efficiently when its maximum value is reached. 
To demonstrate how Chezy’s resistance coefficient can be 

calculated in a horseshoe-shaped tunnel, some examples of 
calculations are proposed.

Key words: Chezy’s resistance coefficient, uniform flow, 
horseshoe-shaped tunnel, rough model method, simplified 
method.

RÉSUMÉ

Dans le calcul des écoulements uniformes en conduites et 
canaux à surface libre, le coefficient de résistance de Chézy 
(CRC) n’est pas a priori une donnée du problème et sa valeur 
est considérée de manière arbitraire, ce qui implique un calcul 
plutôt approximatif. Cet inconvénient majeur se retrouve dans 
tous les profils géométriques de conduites et de canaux. La 
connaissance de la valeur de ce coefficient est indispensable 
au dimensionnement d’un ouvrage, voire même pour le calcul 
de la profondeur normale. C’est dans ce contexte que s’inscrit 
l’objectif de notre recherche en orientant principalement nos 
travaux sur l’identification et l’établissement de la relation du 
coefficient de résistance à l’écoulement. En nous basant sur la 
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méthode du modèle rugueux (MMR) destinée au calcul des 
conduites et canaux, nous pouvons établir la relation générale 
du coefficient de résistance d’une manière explicite dans le 
domaine de l’écoulement turbulent pour les différents profils 
géométriques, notamment pour la conduite en forme de fer à 
cheval. Il apparaît clairement que le coefficient de résistance de 
Chézy dépend fortement du taux de remplissage, du débit, de 
la pente longitudinale, de la rugosité absolue des parois internes 
de la conduite et de la viscosité cinématique du liquide. En 
outre, dans ce travail, une méthode simplifiée par rapport à 
celle citée précédemment est présentée afin de déterminer le 
coefficient de résistance de Chézy avec un nombre limité de 
données, à savoir, le débit, la pente de la conduite, la rugosité 
absolue et la viscosité cinématique. Enfin, après l’étude de la 
variation du coefficient de résistance de Chézy en fonction du 
taux de remplissage, une expression explicite est également 
donnée pour le calcul aisé de ce coefficient lorsqu’il atteint sa 
valeur maximale durant l’écoulement dans la conduite. Des 
exemples de calcul sont proposés pour montrer comment on 
peut calculer le coefficient de Chézy dans une conduite en 
forme de fer à cheval.

Mots-clés  : coefficient de résistance de Chézy, écoulement 
uniforme, méthode du modèle rugueux, conduite en forme 
de fer à cheval, méthode simplifiée.

1. INTRODUCTION

Several researchers have been concerned with determining 
Chezy’s resistance coefficient C formula since its first appearance 
in 1775 (CARLIER, 1972; CHOW, 1973; FRENCH, 1986) 
and expressions for this parameter have continuously been 
developed in artificial channels and conduits characterizing 
the open channel uniform flow. However, the findings of 
these studies were not actually persuading, particularly 
for artificial channels. To fill such gaps and to develop the 
bibliography as well, the present study aims at formulating an 
easy-to-use expression for determining Chezy’s coefficient C. 
Founded on the rough model method (RMM) (ACHOUR 
and BEDJAOUI, 2006; ACHOUR and BEDJAOUI, 2012; 
ACHOUR, 2015a; ACHOUR, 2015b; LOUKAM et al., 
2018) established for channels and conduits, a general relation 
of resistance coefficient in its explicit form can be set, catering 
for the necessary hydraulic parameters such as the filling rate, 
the discharge, the longitudinal slope, the absolute roughness of 
the conduit internal walls and the liquid kinematic viscosity. 
In the horseshoe-shaped artificial tunnel (Figure 1), this 
relation is acceptable for all states of the turbulent flow. In 
the same context, another simplified method taken from the 
same theory of the RMM is proposed to calculate the Chezy’s 
resistance coefficient C taking into consideration a restricted 

number of data as follows: the discharge Q, the slope i, the 
kinematic viscosity v, and the absolute roughness ɛ. Also, to 
determine the maximum value of the resistance coefficient 
C within the same conduit, some calculation procedures are 
formulated. Examples of application with practical data to 
clarify the calculation phases of each method are provided.

2. LITERATURE REVIEW

Many efforts have been made to establish formulas 
expressing the coefficient of resistance of Chezy. The most 
frequently known will be briefly described in this section. 
One of the equations of the Chezy coefficient (C) is Prony's 
suggestion, and its formula is as follows (CARLIER, 1972):

  1 0 000044
0 0003092C V

� �
.

.� �                        (1)

with V: flow velocity (m∙s-1).

Tadini simplified Chezy’s coefficient by giving a constant 
value equal to 50 (CARLIER, 1972). While GANGUILLET 
and KUTTER (1869) presented a different formula using 
more parameters such as the hydraulic radius Rh, the roughness 
coefficient n and the slope i, as displayed below:

  C i n

i
n
Rh

�

. �

.
�

� �

� ��
�
�

�
�
�

�
23 0 00155 1

1 23 0 00155                    (2)

This formula uses the international unit system and the 
values of the roughness coefficient are tabulated. The experience 
has revealed that for low slopes (less than 0.0001), the term 
0.00155/i takes values too high, and the formula 2 becomes 
significantly less precise (CARLIER, 1972).

Contrary to Ganguillet’s formula, Kutter provided another 
expression, very much used in sanitation tunnels, and more 
accessible to be applied, namely (CARLIER, 1972):

           C
R

b R
h

h

�
�

�
100

                                  (3)

where b is the roughness of the conduit internal wall. We can 
notice in these expressions that none of them account for the 
kinematic viscosity of the flowing liquid.

In a more straightforward form, MANNING (1895) 
suggested another formula where C can be determined by the 
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hydraulic radius Rh and the roughness coefficient n, the latter  
being similar to that experienced in the Ganguillet-Kutter 
formula, or:

             C
n
Rh�= �

1 1
6                                      (4)

BAZIN (1897) suggested an expression for the coefficient 
C depending on the hydraulic radius Rh and the pipe roughness 
coefficient ү, whose values are tabulated (CARLIER, 1972).

          C

Rh

��
�

�
87

1 �
                                   (5)

In 1949, Thijsse expressed in an implicit formula the 
Chezy’s coefficient including the Reynolds number Re defining 
the flow regime in the conduct, in addition to the absolute 
roughness ɛ and the hydraulic radius Rh (CARLIER, 1972).

  C
R

C
Reh

� � log�� �
�

�
�

�

�
�18

12 3
�

                       (6)

In this formula, the implicit coefficient C is based on 
various hydraulic parameters such as the absolute roughness 
and the Reynolds number, where it depends on the kinematic 
viscosity and evidently on the hydraulic radius.

The formulas from 1 to 6 are expressed in the international 
unit system, where Rh (m), i (m∙m-1), ɛ (m) and ү, n, b are 
coefficients of roughness with values provided by tables as a 
function of the type of the material forming the channel or the 
conduit.

POWELL (1950) expressed the Chezy’s coefficient based 
on the works of KEULEGAN (1938), with an implicit formula 
like that of Thijsse:

     C
R

C
Reh

� � � log�� �
�

�
�

�

�
�42

4
�

                         (7)

where Rh is the hydraulic radius in feet, Re is the Reynolds 
number, and ɛ is a practically measurable roughness. 

The calculation of the coefficient C by Thijsse’s relation 6 
and that of Powell 7 requires an iterative process.

SWAMEE and RATHIE (2004) suggested a new general 
formula 8 for C, which is similar to the Colebrook formula for 
tapping pipelines to account for all the parameters of the flow:

      C g
R R giRh h h

� � . ln
�

. �
�

�� �
�

�
�
�

�

�
�
�

2 457
12

0 221� �                (8)

where g is the acceleration due to gravity (m∙s-2), v the kinematic 
viscosity (m2∙s-1), Rh (m), i (m∙m-1) and ɛ (m).

This formula is valid for every shape of conduits and in all 
turbulent flow domains, be it smooth, rough, or of transition. 
However, when the conduit linear dimension is not provided, 
it may be implicit.

Several other studies have been carried out by researchers 
to define the Chezy coefficient. However, their uses remain 
very restricted. They include STREETER (1936), PERRY 
et al. (1969), MARONE (1970), PYLE and NOVAK (1981), 
NAOT et al. (1996), EAD et al. (2000), GIUSTOLISI (2004), 
etc.

3. METHODS

3.1 Horseshoe-shaped tunnel

The horseshoe-shaped tunnel profile is generally used in 
free-surface flows for evacuating rainwater and the drainage of 
sewage from cities, in the transport of supply and irrigation 
water. It has been designed and built for several hydraulic 
projects in some countries (HU, 1973; LV et al., 2001; 
MERKLEY, 2005).

The geometric shape of the horseshoe-shaped tunnel can 
offer essential hydraulic qualities. Indeed, it rests on a much 
larger surface than the circular or egg-shaped conduit. The 
vertical blanks of the lower half allow a robust resistance to 
support tunnel loads and those of essential embankments. The 
bottom of the tunnel is large enough to allow easy access for 
maintenance and cleaning.

3.1.1 Geometrical characteristics

The horseshoe-shaped tunnel profile is displayed in figure1. 
In terms of geometry, it is defined by elements that follow 
(Figure 1):

• Section (FA): an arc of the circle with center (C) and 
diameter 2D;

• Section (FE): an arc of the circle of center (B) and diameter 
2D;

• Section (BA): an arc of the circle with center (E) and 
diameter 2D;

• Section (ECB): the semicircle of center (O) and diameter 
D; 

• α+β = π/4, α = 0.42403104 radian and γ= π/4;
• Y = 0.088562171D ≈ 0.089D, Ym = D.
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Figure 1. Horseshoe-shaped tunnel profile (LENCASTRE, 1996; ACHOUR, 2007).
 Profil de la conduite en forme de fer à cheval (LENCASTRE, 1996; ACHOUR, 2007).

3.1.2 Hydraulic characteristics

In the conduit (Figure 1) and accordance with the normal 
depth Yn, three cases studies can be analyzed separately. 
Consequently, the hydraulic characteristics, specifically: the 
wetted perimeter P, the wetted cross-sectional area A and the 
hydraulic radius Rh can be formulated as a function of the 
filling rate ƞ = Yn/D. 

Case 01: ƞ ≤ 0.089 

   P D� �� � �2 � �                                 (9)

          A D� �� � � � �2� � � �                          (10)

             R D
h � � ��� � �

2
� �                             (11)

where 

           � � �� � � �� ��� �cos 1 1                        (12)
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�� ��� �

�

�
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1 2

11cos
                  (13)

Case 02: 0.089 ≤ ƞ ≤ 0.5 

   P�=� D� �� �                                 (14)

              A D� �� � �2� �                               (15)

              R Dh    
 

�
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� �
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                              (16)
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1
2

1                  (17)
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�
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�

�

�
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2

1
2

1
1
2

1
2

��

�

�
�
�
�� (18)

Case 03: 0.5 ≤ ƞ ≤ 1 

                P D   � � �� �                                (19)

               A D� � �� 2� �                               (20)
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              R Dh    �
� �
� �

� �
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                              (21)

where

     � � �� �� � �� ��� � . cos �3 267 2 11                (22)
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�
�

�
�
� �� ��
�

�
�

�� � . �0 829
1
4

2 1
1
2

11cos
�    (23)

3.2 Chezy’s resistance coefficient: general expression

In free-surface uniform flows, Chezy’s formula expresses 
the discharge Q as:

            Q CA R ih   =                                 (24)

The open channel flow design draws upon the discharge 
Q, the longitudinal slope i, the filling rate ƞ, the absolute 
roughness ɛ of the internal wall of the conduit, and the 
kinematic viscosity v of the liquid.

However, the resistance coefficient to flow C in equation 24 
changes as a function of the filling rate ƞ. For this purpose, this 
coefficient is not an a priori constant for the problem, and thus 
it becomes the objective of the study at hand.

The discharge relationship of ACHOUR and BEDJAOUI 
(2006) accepted in all geometric profiles and set in all turbulent 
flow regimes (smooth turbulent, transitional and turbulent 
rough) shows that C depends on all flow parameters.

ACHOUR and BEDJAOUI (2006) formulate the 
discharge Q as follows:

    Q g A R i
R Reh
h

� � log
.

.
��� �

�

�
�

�

�
�4 2

14 8
10 04�

         (25)

where ɛ is the absolute roughness of the conduit internal wall, 
Re: Reynolds number expressed by the following formula:

         Re
giR
v
h= 32 2

3
                          (26)

When the relationships 24 and 25 are combined respectively, 
C can be stated as follows:

          C g
R Reh

�� �
�

�
�

�

�
�� log

.
.

4 2
14 8

10 04
�

�
               (27)

Equation 27 shows that Chezy’s resistance coefficient C 
depends on the absolute roughness, the hydraulic radius Rh, 

and the Reynolds number Re. According to equation 26, the 
last parameter is a function of the slope i, the liquid kinematic 
viscosity v, and the hydraulic radius Rh. Equations 11, 16 and 
21 are taken into consideration where the hydraulic radius Rh 
depends on the filling rate ƞ and the conduit diameter D.

In dimensional terms, equation 27 becomes:

           
C
g R Reh

� � � log
.

.
�� �

�

�
�

�

�
�4 2

14 8
10 04�

              (28)

Case 01: ƞ ≤ 0.089 

By equations 11 and 26, we obtain:

    Re
giD

� � ��� ��16
3 3

2�
�

� �                       (29)

In the full state of the conduit where ƞ = 1, and from the 
relations 21 and 26, we can write:

        Re
giD

f �� . �5 788
3

�
                           (30)

The index f indicates the full state of the conduit.

Thus, we can also reformulate equations 29 and 30 as 
follows:

    Re Re f� � ��� ��2 764
3

2. � � �                        (31)

Based on both equations 11 and 31, the relationship 28 can 
be rewritten as follows: 
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Case 02: 0.089 ≤ ƞ ≤ 0.5 

For this case, using equations 16 and 26, we have:

           Re
g iD
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�
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� �
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�
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�
�32 2

3
3

2

�
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                    (33)

Therefore, we can modify equations 30 and 33 with the 
following:

  Re Re f� � . ��
� �
� �

�

�
�
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�
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                         (34)
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From equations 16 and 34, 28 can be rewritten as follows: 

             C
g

D

Re f

� � � log
.�

.
�� � �

� �

�
� �
� �

�

�
�

�

�
�

�

�

�
�
�4 2
14 8

1 284
3

2

�

� �
� �

� �
� �

���
�
�

�

�

�
�
�
�
�
�

   (35)

Case 03: 0.5 ≤ ƞ ≤ 1 

Equations 21 and 26 result in:
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Consequently, we can also write from equations 30 and 36:

  Re Re f� . ��
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From equations 21 and 37, 28 can be rewritten as follows: 
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3.3 Chezy’s resistance coefficient (CRC) calculation via the rough 
model method (RMM)

To calculate Chezy’s resistance coefficient, the diameter 
D can be an unknown parameter. The given parameters are 
the discharge Q, the conduit filling rate ƞ, the longitudinal 
slope i, the absolute roughness ɛ, and the kinematic viscosity 
v of the flowing liquid. The expressions 32, 35 and 38 will no 
extend for the explicit computing of C. Then, in this case, the 
rough model method (RMM) can be valid to determine this 
coefficient.

The rough model is mainly characterized by ε /Dh = 
0.037 (ACHOUR, 2007) as the arbitrarily assigned relative 
roughness value, where Dh  is the hydraulic diameter. Thus, 
the friction factor is f � = 1/16 according to Colebrook-White 
relationship for Re =  Re  tending to an infinitely large value. For 
Re tending to infinity, Colebrook-White's relationship leads to 
the Nikuradse formula as follows (ACHOUR, 2007):

     f
Dh� log

/
. �
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2
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�                   (39a)

By introducing the value ε /Dh = 0.037, we have: 

       f � log
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          (39b)

For a coefficient of friction f � = 1/16 defined by the 
reference rough model (ACHOUR, 2007), the C  can be 
written:

          C g f g� � / � � �= = =8 8 2 constant                 (39c)

The conduit in the rough model is defined by a diameter  
D , a longitudinal slope  i  , flowing a discharge Q  for a liquid 
of kinematic viscosity  ν  and a filling rate  η . 

For this purpose, to express the C value, characterizing the 
flow in the conduit, we can adopt these conditions: D D≠ ; 
Q = Q;  i = i;  η = η;  ν = v.

Case 01: ƞ ≤ 0.089  

From equations 10 and 11, equation 24 becomes:

           Q C D i� � � � �1
2

3
2 2 5� � � �                    (40)

We set:

     Q * � � � � �1
2

3
2� � � �                          (41)

Then:

           Q
Q

C D i
* =

2 5
                               (42)

The relative conductivity of the rough model in accordance 
with formula 42 gives the following:

          Q
Q

C D i
* =

2 5
                               (43)

Then, according to formula 39c, equation 43 becomes:

         Q
Q

gD i
* =

128 5                              (44)
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For a rough model, equation 41 becomes:

         
Q

gD i128

1
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Thus:
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            (46)

For this purpose, if the parameters Q, i and ƞ are known, 
equation 46 computes explicitly the diameter D  of the rough 
model.

In the rough model and using equation 29, the Reynolds 
number  Re  characterizing the flow is:

  Re
giD

� �� � ��� ��16
3 3

2�
�

� �                          (47)

or

  Re f� . Re� � ��� ��2 764
3

2� �                          (48)

where

      Re
giD

f �� .5 788
3

�
�

                            (49)

Chezy’s coefficient C is provided according to the RMM as 
follows (ACHOUR and BEDJAOUI, 2006):

               C
C

� ��
�

5
2

                                    (50)

where ψ is a dimensionless parameter determined by the 
following expression (ACHOUR and BEDJAOUI, 2006; 
ACHOUR and BEDJAOUI, 2012):
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From equations 11 and 48, the relationship 51 becomes:
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As of 39 and 50:

       C
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5
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From equation 52, the relationship 53 becomes:
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In dimensionless terms, equation 54 can be rewritten as 
follows:
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Case 02: 0.089 ≤ ƞ ≤ 0.5 

From the equations 15 and 16, 24 becomes:

        Q C D i�� � ��� �� � ��� ��
�

� � � �
3
2

1
2 2 5                   (56)

We set: 

  Q * � �� � ��� �� � ��� ��
�

� � � �
3
2

1
2                          (57)

Then:

            Q
Q

C D i
* =

2 5
                            (58)

The relative conductivity of the rough model in accordance 
with equation 58 will give the following:

             Q
Q

C D i
* =

2 5
                            (59)

Then, according to equation 39c, 59 becomes:

            Q
Q

gD i
* =

128 5                           (60)

For a rough model, equation 57 is written:

            
Q

gD i128 5

3
2

1
2� �� � ��� �� � ��� ��
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� � � �                (61)
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So: 

    D Q
g i
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�
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�
� .

�
. .

.

0 379
0 2 0 6

0 4

� � � �           (62)

For this purpose, if the parameters Q, i and ƞ are known, 
equation 62 permits the explicit computing of the diameter D  
of the rough model.

In the rough model and using equation 33, the Reynolds 
number  Re  characterizing the flow is:
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or
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where

Re
g iD

f � � . �
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�5 788
3

�

From expressions 16 and 64, 51 becomes:
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According to 65, equation 53 becomes:
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Then, in dimensionless terms:
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Case 03: 0.5 ≤ ƞ ≤ 1 

From equations 20 and 21, equation 24 becomes:

         Q C D i� � ��� �� � ��� ��
�

� � � �
3
2

1
2 2 5                  (68)

We set: 

   Q * �� � ��� �� � ��� ��
�

� � � �
3
2

1
2                       (69)

Hence: 

            Q
Q

C D i
* =

2 5
                             (70)

The relative conductivity of the rough model in accordance 
with equation 70 gives the following:

             Q
Q

C D i
* =

2 5
                            (71)

Then, according to 39c, equation 71 becomes:

          Q
Q

gD i
* =

128 5                             (72)

For a rough model, the relationship 69 is written:
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So: 
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For this purpose, if the parameters Q, i and ƞ are known, 
equation 74 permits the explicit computing of the diameter D  
of the rough model.

In the rough model and by the formula 36, the Reynolds 
number  Re  characterizing the flow is:
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where
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From equations 21 and 76, 51 becomes:
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According to 77, equation 53 becomes:
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Then, in dimensionless terms:
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3.4 Simplified method

This paragraph is devoted to the presentation of a simplified 
method that originated from the rough model theory. 
Compared to the method presented previously in section 
3.3, this method makes it easy to determine the coefficient C 
using relatively few data. To do so, the required parameters are 
limited to the discharge, the slope of the conduit, the absolute 
roughness, and the liquid kinematic viscosity. 

If it is supposed that � �� and when equation 74 is used 
for the rough model, we have the following:

    Q * � � ��� �� � ��� ��
�

� � � �
3
2

1
2                       (80)

where Q* is the relative conductivity and is given using 
equation 72.

Consider the referential rough model with a diameter D  
equal to that of the full state of the tunnel corresponding to 

 η  = 1: for  η  = 1, the equations 22 and 23 will be: ω(  η ) = 
3.267, λ(  η ) = 0.829.

Thus, equation 80 becomes Q* = 0.133π. For this same 
value of relative conductivity, equation 80 provides another 
value of the filling rate � � 0 8505.  different from  η = 1.

The hydraulic radius  Rh  is provided in accordance with 
equation 21 for the full state of the tunnel:

             R Dh =� .0 3056 ��                             (81)

For Q* = 0.133π, the diameter D  of the full rough model 
is gotten by the formulation below:

              D Q
gi

� � . � .

.

�� �
�

�
��

�

�
��

�0 133
128

0 4

0 4

�                  (82)

C can easily be calculated by following the steps below:

1. Compute the diameter D  corresponding to the full state 
of the conduit by equation 82.

2. Therefore, the hydraulic radius  Rh  is computed by 
equation 81.

3. Besides, equation 26 directly computes the Reynolds 
number of the rough model.

4. The dimensionless correction factor ψ is explicitly 
calculated using equation 51.

5. Lastly, using equation 53, C is obtained.

4. RESULTS AND DISCUSSION

Following equations 32, 35 and 38, the relative roughness 
ɛ/D the filling rate ƞ of the conduit and the Reynolds number 
corresponding to the full state of the conduit Ref are required 
for Chezy’s resistance coefficient C. When these parameters are 
known, the same coefficient can explicitly be determined by 
equations 32, 35 and 38.

However, using the rough model method (RMM), C 
can be calculated using the parameters  Re f , D , ɛ and ƞ, by 
equations 54, 66 and 78 without knowing the diameter D. The 
simplified method derived from the (RMM) can also determine 
the C, with inputs limited to the discharge Q, the slope i of the 
tunnel, the absolute roughness ɛ, and the kinematic viscosity v.

In what follows, examples are provided after having 
discussed the variation of this coefficient as a function of the 
filling rate �.
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4.1 Maximum of Chezy’s resistance coefficient

According to equations 32, 35 and 38, C depends on 
variables ƞ, ɛ/D and Ref. Curves can be drawn presenting the 
variation of C as a function of the filling rate ƞ for fixed values 
of the relative roughness ɛ/D and by varying values of the 
Reynolds number Ref.

Figures 2a and 2b showed the variation of C g  as a 
function of ƞ for both states of turbulent flow, the smooth state 
ɛ/D = 0, and the rough state ɛ/D = 0.05, where the Reynolds 
number Ref varying between 104 and 107.

 
In these curves, C g  undergoes an upsurge along 

the variation of the filling rate ƞ, the increase of C g  
is remarkably rapid where ƞ is lower than 0.3. Then, where 
ƞ  >  0.3, the increase becomes very slow until the C g  
reaches a maximum value for the same filling rate ƞ = 0.8108 in 
all curves. In the interval 0.8108 < ƞ < 1, a decrease in C g  
seems remarkable by the decline of the curves. Notably, in the 
figure 2b the curves merge above the 105 value of the Reynolds 
number, which explains that in rough turbulent regime the 
variation of C g  depends only on the filling rate ƞ.

For all curves, the C reaches the maximum at the same value 
of the filling rate � �� �0.8108 in the case of the horseshoe-
shaped tunnel. For this purpose, we can say that it does not 
depend upon the value of the Reynolds number or the state of 
the inner tunnel wall (smooth or rough).

At � �� �0.8108 ,  C
g

C
g
max

 
    

 
=                                      (83)

Also, equations 22 and 23 give the following:

� � �� � �� �� .0 8108 = 3.267-cos 2 0.8108-1 = 2.367-1

� � �� � �� �� .0 8108 =�0.829-
1
4

cos 2 0.8108�-1-1

                         
+� 0.8108-

1�
2

0.8108 1-0.8108 = 0.726�
�
�

�
�
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�

�
�

By replacing these last two values in equation 38, we obtain:
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or
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Equation 85 permits the calculation of the maximum 
Chezy’s resistance coefficient Cmax if the relative roughness ɛ/D 
and the Reynolds number Ref are known.

However, without knowing the diameter D, Cmax can be 
calculated by attributing to ƞ the value 0.8108 in equation 79.

Therefore, we can write:
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so
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Example 1

For the following data: Q = 0.8 m3∙s-1, i = 3 x 10-4, ɛ = 10-4 m, 
ƞ = 0.7 and v = 10-6 m2∙s-1, calculate Cmax.

Solution

For the filling rate ƞ = 0.7, equation 74 permits the explicit 
calculation of the rough model diameter D  with the known 
parameters Q, ƞ and i. 

So,

� � �� � � � � � ��0 7 3 267 2 0 7 1 2 1081. . cos ( . ) .

� � �� � �� � �
�
�

�
�
� � �0 7. =�0.829-

1
4

cos 2� 0.7-1 + 0.7-
1
2

0.7 �1-�0.7-1 ��
�

�
�

     =0.631

D Q
gi

 = 
0.2 -0.6

0.4

0 379. � � � �� ��� �� � ��� ��
�

�
�
�

�

�
�
�   

    
=�0.379 2.108 0.631

0.8
9.81 0.0003

=�1.7010.2 -0.6
0.4

� � � �
�

�

�
�

�

�
� ��m

Using equation 49, we can compute the full state Reynolds 
number  Re f :

Re
giD

f = � = �
9.81 3� 10 (1.701)

10

3 -4 3

-65 788 5 788. .
�

�
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     = 696812.553
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Figure 2. Variation of C g  as a function of the filling rate ƞ according to the equations 32, 35 and 
 38 for fixed values of the relative roughness and the Reynolds number Ref: a) ɛ/D = 0 and  
 b) ɛ/D = 0.05.
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Cmax can be easily calculated using equation 87 without 
knowing the diameter D of the tunnel:

       
C g D

Remax
f

=�-5.343 log
5.828

+
6.398��

�

�
�

�

�

�
�

 

   
=-5.343 ��log

0.0001
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696812.553

g
�

�

�
�

�

�

�
�

               = 78.908 m0.5·s-1

4.2 Calculation of Chezy’s resistance coefficient by the rough 
model method 

The expressions 54, 66 and 78 are established using the 
rough model method (RMM) to direct calculating C as a 
function of the parameters  Re f , D , ɛ and ƞ without knowing 
the diameter D of the tunnel. This calculation can be clearly 
shown in example 2. 

Example 2

By the rough model method, calculate Chezy’s resistance 
coefficient from the following data: Q = 0.9 m3∙s-1, i = 3 x 10-4, 
ɛ = 10-4 m, ƞ = 0.6 and v = 10-6 m2∙s-1.

Solution

For ƞ = 0.6, the calculation will be made by equations 22 
and 23. From the known parameters Q, ƞ and i, equation 74 
permits the explicit calculation of the diameter D  of the rough 
model.

So, at ƞ = 0.6

� �=� �= -cos 2 0.6-1 = 1.897-10 6 3 267. .� � �� �   

� �=�  =�0.829-
1
4

cos 2� 0.6-1 +� 0.6-
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2
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�
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�
�
� 66� ��
�

�
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            = 0.536

Equation 74 gives the diameter D : 
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Using equation 49, we can calculate at full state, the 
Reynolds number  Re f :
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giD
f = 5.788 = 5.788�

9.81 3� �10 (1.926�)
10
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Lastly, C is calculated using equation 78:  
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    =79.282 m0.5·s-1

Example 3 is proposed to confirm the usefulness of the 
simplified method for straightforwardly determining the 
Chezy’s resistance coefficient.

Example 3 

According to the data of example 2: Q = 0.9 m3∙s-1, 
i = 3 x 10-4, ɛ = 10-4 m and v = 10-6 m2∙s-1, compute Chezy’s 
resistance coefficient by the simplified method.

Solution

Chezy’s resistance coefficient can be calculated by following 
the steps below:

1. Diameter D  of the full rough model is computed by 
equation 82:

D Q
gi

 =�(0.133 )
128

0.133
0.9

128� 9.81
-0.4

0.4

-0.4� �
�

�
��

�

�
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�
�

�� �

�

�
�

�

�
�

3 10-4

0.4

D = 1.652 m

2. The hydraulic radius  Rh  is calculated by equation 81:

R Dh=�0.3056 �= 0.3056� 1.652 = 0.505 m×

3. Using equation 26 the Reynolds number  Re  of the rough 
model is calculated as follows: 

 
Re

Rgi h� = 32 2��×� = 32 2�×�
9.81 3 10 0.505

10

-4 3

-6

3
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 = 880916.328
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4. The dimensionless correction factor ψ is explicitly obtained 
by equation 51:
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=�0.727

5. Finally, Chezy’s resistance roefficient C is calculated using 
equation 53:

C
g

�= 
8 2

= 
8 2 9.81

(0.727)
= 78.607�m s5

2
5

2

0.5 -1

�

�
�

The value of C calculated by the simplified method 
(78.607) is less than that calculated in example 2 by the rough 
model method (79.282). The relative error rate between both 
values is around 0.8%.

5. CONCLUSION

In this research paper, Chezy’s resistance coefficient in the 
horseshoe-shaped tunnel is expressed by various equations. 
According to the geometry shape of the tunnel and the position 
of the normal depth of the flowing liquid in the conduit, three 
cases of flow were distinguished. For every case, the hydraulic 
characteristics, wetted perimeter P, wetted cross-sectional area 
A and hydraulic radius Rh were determined as a function of 
filling rate ƞ. More importantly, general equations 32, 35 and 
38 have been established to explicitly determine the Chezy’s 
resistance coefficient C depending on the following parameters: 
the filling rate ƞ, the relative roughness ɛ/D and the Reynolds 
number at the full state of the tunnel Ref. Whereas, equations 
54, 66 and 78 are developed using the rough model method 
(RMM) to compute C as a function of the parameters  Re f , D , 
ɛ and ƞ without knowing the diameter D of the tunnel.

Furthermore, a simplified method based on (RMM) is 
suggested in the current study, to explicitly compute the 
coefficient C. This method has the advantage of using relatively 
few data, precisely, the discharge Q, the slope i, the absolute 
roughness ɛ and the kinematic viscosity v. To conclude, curves 
(Figures 2a and 2b) are established to show the variation of 
Chezy’s resistance coefficient as a function of the filling rate, 

this has been performed through attributing fixed values to the 
relative roughness ɛ/D = 0 and ɛ/D = 0.05, where the Reynolds 
number varying between 104 and 107. All these curves uncover 
that Chezy’s resistance coefficient attains a maximum at the 
filling rate ƞ = 0.8108. Therefore, in both cases where the 
diameter of the tunnel can be known or not, equations 85 
and 87 are successively formulated to express for each case the 
maximum of Chezy’s resistance coefficient Cmax. 
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