Abstracts
Résumé
Ce travail est une comparaison des capacités d’électro-oxydation du cristal violet sur des électrodes de Ti/TiO2 et Ti/IrO2-RuO2. Les résultats révèlent que le dépôt d’oxyde de métaux semi-conducteurs sur un support métallique adéquat tel que le titane permet d’améliorer l’activité électrochimique de ces électrodes. De même que l’influence des paramètres opératoires que sont la densité de courant (4,4, à 6,6 mA∙cm-2), la concentration de l’électrolyte (0,5 à 1,5 g∙L-1), la concentration initiale du colorant (2,5 x 10-5 à 10-4 M) et la surface d’électrode (4,55, 5,85 et 7,15 cm2) sur l’efficacité du traitement serait liée à la nature de l’électrode. Le suivi de la demande chimique en oxygène (DCO) au cours de l’électrolyse montre que Ti/IrO2-RuO2 possède le meilleur rendement épuratoire, puisqu’il permet d’atteindre un taux de réduction de la DCO de 92 % comparativement à un taux de 83 % enregistré dans le cas de Ti/TiO2 au bout de 2 h de traitement.
Mots-clés :
- électro-oxydation,
- cristal violet,
- oxyde de métaux,
- demande chimique en oxygène,
- paramètres opératoires
Abstract
The degradation of crystal violet in aqueous solution has been studied by an electro-oxidation process using Ti/TiO2 and Ti/IrO2-RuO2 anode electrodes. The study reveals that the deposition of metal oxide on a suitable metal support, such as pure titanium, improves the electrochemical activity of the electrodes. Different operating parameters were investigated such as current density (4.4 to 6.6 mA∙cm-2), initial concentration of dye (2.5 x 10-5 to 10-4 M), supporting electrolyte concentration (0.5 to 1.5 g∙L-1) and electrode surface (4.55, 5.85 and 7.15 cm2). The best performances of the electrolytic system were recorded using Ti/IrO2-RuO2 and 92% of COD could be removed in 2 h. By comparison, a maximum of 83% of COD could be removed using Ti/TiO2 for a similar imposed treatment time of 2 h.
Keywords:
- electro-oxidation,
- crystal violet,
- metal oxide,
- chemical oxygen demand,
- operating parameters
Appendices
Références bibliographiques
- ALAHIANE S., S. QOURZAL, M. EL OUARDI, M. BELMOUDEN, A. ASSABBANE et Y. AIT-ICHOU (2013). Adsorption et photodégradation du colorant indigo carmine en milieu aqueux en présence de TiO2/UV/O2. J. Mater. Environ. Sci., 4, 239-250.
- ANGLADA A., A. URTIAGA et I. ORTIZ (2009). Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications. J. Chem. Technol. Biotechnol., 84, 1747-1755.
- BANDALA E.R., M.A. PELAEZ, A. JAVIER GARCIA-LOPEZ, M.J. SALGADO et G.E. MOELLER CHAVEZ (2008). Photocatalytic decolorization of synthetic and real textile wastewater containing benzidine-based azo dyes. Chem. Eng. Process., 47, 169-176.
- CHEN G. (2004). Electrochemical technologies in wastewater treatment. Sep. Purif. Technol., 38, 11-41.
- CHEN Y., J.C. BAYGENTS et J. FARRELL (2017). Evaluating electrocoagulation and chemical coagulation for removing dissolved silica from high efficiency reverse osmosis (HERO) concentrate solutions. J. Water. Process. Eng., 16, 50-55.
- DE LA CRUZ N., L. ESQUIUS, D. GRANDJEAN, A. MAGNET, A. TUNGLER, L.F. DE ALENCASTRO et C. PULGARIN (2013). Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Res., 47, 5836-5845.
- DJANEYE-BOUNDJOU G., L.M. BAWA, Y. BOUKARI et K. DOVI (2001). Photodégradation de la rhodamine B et du bleu de méthylène en solution aqueuse. J. Soc. Ouest-Afr. Chim., 11, 75-94.
- DROGUI P., J.F. BLAIS et G. MERCIER (2007). Review of electrochemical technologies for environmental applications. Recent Pat. Eng., 1, 257-272.
- ERSEVER I., V. RAVINDRAN, H.H. TSAI et M. PIRBAZARI (2014). Modeling and design of anaerobic fluidized bed reactor with recycling for denitrification of reverse osmosis concentrates. Chem. Eng. Sci., 108, 111-122.
- FAN H.J., S.T. HUANG, W.H. CHUNG, J.L. JAN, W.Y. LIN et C.C. CHEN (2009). Degradation pathways of crystal violet by Fenton and Fenton-like systems: condition optimization and intermediate separation and identification. J. Hazard. Mater., 171, 1032-1044.
- FLORES N., I. SIRES, R.M. RODRIGUEZ, F. CENTELLAS, P.L. CABOT, J.A. GARRIDO et E. BRILLAS (2017). Removal of 4-hydroxyphenylacetic acid from aqueous medium by electrochemical oxidation with a BDD anode: Mineralization, kinetics and oxidation products. J. Electroanal. Chem., 793, 58-65.
- GARCIA-GOMEZ C., P. DROGUI, B. SEYHI, P. GORTARES-MOROYOQUI, G. BUELNA, M.I. ESTRADA-ALVGARADO et L.H. ÁLVAREZ (2016). Combined membrane bioreactor and electrochemical oxidation using Ti/PbO2 anode for the removal of carbamazepine. J. Taiwan Inst. Chem. E., 64, 211-219.
- GARCIA-SEGURA S., J. KELLER, E. BRILLAS et J. RADJENOVIC (2015). Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. J. Hazard. Mater., 283, 551-557.
- GARCIA-SEGURA S., J.D. OCON et M.N. CHONG (2018). Electrochemical oxidation remediation of real wastewater effluents - A review. Process. Saf. Environ., 113, 48-67.
- HAMZA M., R. ABDELHEDI, E. BRILLAS et I. SIRÉS (2009). Comparative electrochemical degradation of the triphenylmethane dye Methyl Violet with boron-doped diamond and Pt anodes. J. Electroanal. Chem., 627, 41-50.
- HURWITZ G., E.M.V. HOEK, K. LIU, L. FAN et F.A. RODDICK (2014). Photo-assisted electrochemical treatment of municipal wastewater reverse osmosis concentrate. Chem. Eng. J., 249, 180-188.
- INDU M., S. PILLAI, A.K. GUPTA, et C. SAHOO (2011). Electrochemical oxidation of crystal violet dye (basic violet 3) using lead oxide electrodes. Proceedings of the IASTED International Conference, 4-6 juillet 2011, Calgary, AB, Canada, Environmental Management and Engineering, pp. 60-66.
- KAUR P., V.K. SANGAL et J.P. KUSHWAHA (2015). Modeling and evaluation of electro-oxidation of dye wastewater using artificial neural networks. RSC. Adv., 5, 34663-34671.
- KAUR P., V.K. SANGAL et J.P. KUSHWAHA (2017). Evaluation and disposability study of actual textile wastewater treatment by electro-oxidation method using Ti/RuO2 anode. Process. Saf. Environ., 111, 13-22.
- LESHEM E.N., D.S. PINES, S.J. ERGAS et D.A. RECHOW (2006). Electrochemical oxidation and ozonation for textile wastewater reuse. J. Environ. Eng., 132, 324-330.
- LI D., J. TANG, X. ZHOU, J. LI, X. SUN, J. SHEN, L. WANG et W. HAN (2016). Electrochemical degradation of pyridine by Ti/SnO2-Sb tubular porous electrode. Chemosphere, 149, 49-56.
- LI S.P., F. JING et H. ZHEN (2008). Preparation and characterization of Y doped Ti/Sb2O5-SnO2 electro-catalytic electrodes. J. Shandong Univ., 49, 22.
- LIAO C.H., S.F. KANG et F.A. WU (2001). Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2/UV process. Chemosphere, 44, 1193-1200.
- MOREIRA F.C., S. GARCIA-SEGURA, V.J.P. VILAR, R.A.R. BOAVENTURA et E. BRILLAS (2013). Decolorization and mineralization of Sunset Yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Appl. Catal. B-Environ., 142-143, 877-890.
- MOREIRA F.C., R.A.R. BOAVENTURA, E. BRILLAS et V.J.P. VILAR (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B-Environ., 202, 217-261.
- NIDHEESH P.V., M. ZHOU et M.A. OTURAN (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197, 210-227.
- OROZCO S.L., E.R. BANDALA, C.A. ARANCIBIA-BULNES, B. SERRANO, R. SUAREZ-PARRA et I. HERNANDEZ-PEREZ (2008). Effect of iron salt on the color removal of water containing the azo-dye reactive blue 69 using photo-assisted Fe(II)/H2O2 and Fe(III)/H2O22 systems. J. Photochem. Photobiol. A, 198, 144-149.
- PAL A., K.Y.H. GIN, A.Y.C. LIN et M. REINHARD (2010). Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci. Total. Environ., 408, 6062-6069.
- PALMA-GOYES R.E., F.L. GUZMAN-DUQUE, G. PEÑUELA, I. GONZALEZ, J.L. NAVA et R.A. TORRES-PALMA (2010). Electrochemical degradation of crystal violet with BDD electrodes: Effect of electrochemical parameters and identification of organic by-products. Chemosphere, 81, 26-32.
- PALMA-GOYES R.E., J. SILVA-AGREDO, I. GONZALEZ, et R.A. TORRES-PALMA (2014). Comparative degradation of indigo carmine by electrochemical oxidation and advanced oxidation processes. Electrochim. Acta, 140, 427-433.
- PANIZZA M., P.A. MICHAUD, G. CERISOLA et C. COMNINELLIS (2001). Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. J. Electroanal. Chem., 507, 206-214.
- PERALTA-HERNANDEZ J.M., M. MENDEZ-TOVAR, R. GUERRA-SANCHEZ, C.A. MARTINEZ-HUITLE et J.L. NAVA (2012). A brief review on environmental application of boron doped diamond electrodes as a new way for electrochemical incineration of synthetic dyes. Int. J. Electrochem., 2012, 1-18.
- PRIETO-RODRÍGUEZ L., D. SPASIANO, I. OLLER, I. FERNÁNDEZ-CALDERERO, A. AGÜERA et S. MALATO (2013). Solar photo-Fenton optimization for the treatment of MWTP effluents containing emerging contaminants. Catal. Today, 209, 188-194.
- SABLE S.S., P.P. GHUTE, P. ÁLVAREZ, F.J. BELTRÁN, F. MEDINA et S. CONTRERAS (2015). FeOOH and derived phases: Efficient heterogeneous catalysts for clofibric acid degradation by advanced oxidation processes (AOPs). Catal. Today, 240, 46-54.
- SIRES I., E. BRILLAS, M.A. OTURAN, M.A. RODRIGO et M. PANIZZA (2014). Electrochemical advanced oxidation processes: Today and tomorrow. A review. Environ. Sci. Pollut. Res., 21, 8336-8367.
- SUN Y., P. LI, H. ZHENG, C. ZHAO, X. XIAO, Y. XU, W. SUN, H. WU et M. REN (2017). Electrochemical treatment of chloramphenicol using Ti-Sn/γ-Al2O3 particle electrodes with a three-dimensional reactor. Chem. Eng. J., 308, 1233-1242.
- THIAM A., I. SIRES, F.A. CENTELLAS, P.L. CABOT et E. BRILLAS (2015). Decolorization and mineralization of Allura Red AC azo dye by solar photoelectro-Fenton: Identification of intermediates. Chemosphere, 136, 1-8.
- WANG J., T. ZHANG, Y. MEI et B. PAN (2018). Treatment of reverse-osmosis concentrate of printing and dyeing wastewater by electro-oxidation process with controlled oxidation-reduction potential (ORP). Chemosphere, 201, 621-626.
- WENG M et J. PEI (2016). Electrochemical oxidation of reverse osmosis concentrate using a novel electrode: Parameter optimization and kinetics study. Desalination, 399, 21-28.
- WU T., G. ZHAO, Y. LEI, et P. LI (2011). Distinctive tin dioxide anode fabricated by pulse electrodeposition: High oxygen evolution potential and efficient electrochemical degradation of fluorobenzene. J. Phys. Chem., 115, 3888-3898.
- ZAVISKA F., P. DROGUI, J.F. BLAIS et G. MERCIER (2009). In situ active chlorine generation for the treatment of dye-containing effluents. J. Appl. Electrochem., 39, 2397-2408.
- ZHANG L., L. XU, J. HE et J. ZHANG (2014). Preparation of Ti/SnO2-Sb electrodes modified by carbon nanotube for anodic oxidation of dye wastewater and combination with nanofiltration. Electrochim. Acta, 117, 192-201.
- ZHANG Y., Y. TINGTING, W. HAN, X. SUN, J. LI, J. SHEN et L. WANG (2016). Electrochemical treatment of anticancer drugs wastewater containing 5-Fluoro-2-Methoxypyrimidine using a tubular porous electrode electrocatalytic reactor. Electrochim. Acta, 220, 211-221.