Abstracts
Abstract
Epilithon is a complex community of autotrophic and heterotrophic organisms that includes inert, organic and inorganic material and is attached to the surface of submersed rocks. Water samples collected in the Grand River (southwestern Ontario) in April 2011 showed that ammonium concentrations decreased downstream, whereas nitrate varied, largely dependent on weather conditions (concentrations of both chemical species were higher during winter). Epilithon δ15N-TN downstream from the Kitchener wastewater treatment plant oscillated between 0.4 to 23.2‰, and δ13C-TC around -27‰. The wastewater treatment plant effluent consisted of δ15N-NO3- between 12 and 16‰, with a decreasing trend as it traveled downstream; δ15N-NH4+ became enriched downstream (as high as 31‰). Average values for δ13C-DIC were -10.1‰ and δ13C-DOC -26.8‰. It is proposed that the nitrogen and carbon isotope composition of epilithon could be used as a short- or medium-term environmental archive, as it reflects in-stream processes, such as ammonia oxidation, in a river impacted by treated wastewater. The interpretation provided here was limited due to the ample range of events and potential sources, specifically when the nitrogen isotopic composition of nitrate and ammonium was similar. Epilithon is easily collected, processed and analysed and proved to be valuable tool to describe changes in river and stream geochemistry.
Keywords:
- Epilithon,
- isotope composition,
- wastewater,
- rivers,
- environmental archive
Résumé
L’épilithon est une communauté complexe d'organismes autotrophes et hétérotrophes, qui vit conjointement avec des matériaux organiques et inorganiques attachés à la surface de rochers submergés. Des échantillons d’eau collectés dans la rivière Grand (sud de l’Ontario) en avril 2011 ont montré une diminution des concentrations d'ammonium vers l’aval, alors que les concentrations de nitrate variaient, principalement en fonction des conditions météorologiques (les concentrations des deux espèces chimiques furent plus élevées pendant l'hiver). La composition isotopique de l’épilithon en aval de l’usine de traitement des eaux usées a varié entre 0,4 et 23,2 ‰ pour l’azote ((d15N-TN) alors que pour le carbone (d13C-TC) la valeur était autour de -27 ‰. L'effluent de l'usine de traitement des eaux usées montrait des valeurs de δ15N-NO3- entre 12 et 16 ‰, avec une tendance à la baisse vers l'aval; les valeurs pour δ15N-NH4+ avait une tendance à augmenter vers l’aval (aussi élevé que 31 ‰). Les valeurs moyennes de δ13C pour le carbone inorganique étaient de 10,1 ‰ et celles pour le carbone organique (δ13C-DOC) étaient de -26,8 ‰. On propose que la composition isotopique de l’épilithon puisse être utilisée comme archive de l'environnement à court ou à moyen terme, étant donné que l’épilithon reflète les processus ayant lieu en amont, comme l’oxydation de l'ammoniac, dans une rivière touchée par le rejet d’eaux usées. Donc, δ15N-TN et δ13C-TC pourraient être utilisés comme un indicateur environnemental à court terme pour les rivières touchées par l’activité humaine, comme constaté dans la rivière Grand. L’interprétation des données actuelles était limitée en raison de la grande gamme de sources potentielles, en particulier lorsque les compositions isotopiques de l’azote étaient similaires pour le nitrate et l’ammonium. L'épilithon est facile à recueillir, à traiter et à analyser et il s'est révélé un outil précieux pour décrire les changements géochimiques se produisant dans la rivière.
Mots-clés :
- épilithon,
- composition isotopique,
- eaux usées,
- rivières,
- indicateur environnemental
Appendices
Bibliographical references
- Abe K., I. Matsumura, A. Imamaki and M. Hirano (2003). Removal of inorganic nitrogen sources from water by the algal biofilm of the aerial microalga Trentepohlia aurea. J. Microbiol. Biotech., 19, 325-328.
- Anderson C. and G. Cabana (2007). Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. J. N. Am. Benthol. Soc., 26, 273-285.
- Azim M.E. and T. Asaeda (2005). Periphyton Structure, Diversity and Colonization. In: Periphyton: Ecology, Exploitation and Management. Azim M.E., M.C.J Verdegem, A.A. van Dam and M. Beveridge (Editors). CAB International, U.K., Chap. 2, pp.15-34.
- Azim M.E., M.C. Beveridge, A.A. van Dam and M.C.J. Verdegem (2005). Periphyton and Aquatic production: an Introduction. In: Periphyton: Ecology, Exploitation and Management.Azim M.E., M.C.J Verdegem, A.A. van Dam and M. Beveridge (Editors). CAB International, U.K., Chap. 1, pp. 1-14.
- Barlow-Busch L., H.M. Baulch and W.D. Taylor (2006). Phosphate uptake by seston and epilithon in the Grand River, southern Ontario. Aquat. Sci., 68,181-192.
- Bendschneider K. and Robinson R.J. (1952). A new spectrophotometric method for the determination of nitrite in sea water. Technical Report No.8, University of Washington Oceanographic Laboratories, 18 p.
- Bothwell M.B. (1988). Growth rate responses of lotic periphytic diatoms to experimental phosphorus enrichment: the influence of temperature and light. Can. J. Fish. Aquat. Sci., 45, 261-270.
- Bowman M.F., P.A Chambers and D.W. Schindler (2005). Changes in stoichiometric constraints on epilithon and benthic macroinvertebrates in response to slight nutrient enrichment of mountain rivers. Freshwater Biol., 50, 1836-1852.
- Cernusak L. A., K. Winter and B. L Turner (2009). Plant δ15N correlates with the transpiration efficiency of nitrogen acquisition in tropical trees. Plant Physiol., 151, 1667-1676.
- Cohen M J., J.B. Heffernan, A. Albertin and J.B Martin (2012). Inference of riverine nitrogen processing from longitudinal and diel variation in dual nitrate isotopes. J. Geophys. Res., 117 G01021.
- Cooke S.J. and C.M. Bunt (1999). Spawning and reproductive biology of the Greater Redhorse, Moxostoma valenciennesi, in the Grand River, Ontario. Can. Field Nat., 113, 497-502.
- Créach V., G. Bertru and A. Mariotti (1997). Compositions isotopiques naturelles des bactéries hétérotrophes et détermination de l'origine du carbone organique dissous biodisponible. C.R. Acad. Sci. III-Vie., 320, 339-347.
- Davis L.S., J.P. Hoffman and P.W. Cook (1990). Production and nutrient accumulation by periphyton in a wastewater treatment facility. J. Phycol., 26, 617-623.
- Dodds W.K., A.J López, W.B. Bowden, S.Gregory, N.B Grimm, S.K. Hamilton, A.E. Hershey, E. Martí, W.H. McDowell, J.L. Meyer, D. Morrall, P.J. Mulholland, B.J. Peterson, J.L. Tank, H.M. Valett, J.R. Webster and W. Wollheim (2002). N uptake as a function of concentration in streams. J. N. Am. Benthol. Soc., 21, 206-220.
- Dorner S.M., P.M. Huck and R.M. Slawson (2004). Estimating potential environmental loadings of Cryptosporidium spp. and Campylobacter spp. from livestock in the Grand River Watershed, Ontario, Canada. Environ. Sci. Technol., 38, 3370-3380.
- Dortch Q. (1990). The interaction between ammonium and nitrate uptake in phytoplankton. Mar. Ecol. Prog. Ser., 61, 183-201.
- Ensign S.H. and M.W. Doyle (2006). Nutrient spiralling in streams and river networks. J. Geophys. Res., 111, 2156-2202.
- Finlay J.C. (2004). Patterns and controls of lotic algal stable carbon isotope ratios. Limnol. Oceanogr., 49, 850-861.
- Gebara F. (1999). Activated sludge biofilm wastewater treatment system. Water Res., 33, 230-238.
- Handley, L. and J. Raven (1992). The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ., 15, 965-985.
- Jones R.I., L. King, M.M. Dent, C.S. Maberly and C.E. Gibson (2004). Nitrogen stable isotope ratios in surface sediments, epilithon and macrophytes from upland lakes with differing nutrient status. Freshwater Biol., 49, 382-291
- Kohl D.H., G. B. Shearer and B. Commoner (1971). Fertilizer nitrogen: contribution to nitrate in surface water in a corn belt watershed. Science, 174, 1331-1334.
- Kohzu A., I. Tayasu, C. Yoshimizu, A. Maruyama, Y. Kohmatsu, F. Hyodo, Y. Onoda, A. Igeta, K. Matsui, T. Nakano, E. Wada, T. Nagata and Y. Takemon (2009). Nitrogen-stable isotopic signatures of basal food items, primary consumers and omnivores in rivers with different levels of human impact. Ecol. Res., 24, 127-136.
- Lissemore L., C. Hao, P. Yang, P.K. Sibley, S. Mabury and K.S. Solomon (2006). An exposure assessment for selected pharmaceuticals within a watershed in Southern Ontario. Chemosphere, 64, 717-729.
- Mariotti A., F. Mariotti, M. Champigny, N. Amarger and A. Moyse (1982). Nitrogen isotope fractionation associated with nitrate reductase activity and uptake of NO3− by pearl millet. Plant Physiol., 69, 880-884.
- Mayer B., E.W. Boyer, C. Goodale, N.A. Jaworski, N. Van Breemen, R.B. Howarth, S. Seitzinger, G. Billen, K. Lajtha, K. Nadelhoffer, D. Van Dam, L. Hetling, M. Nosal and K. Paustian (2002). Sources of nitrate in rivers draining sixteen watersheds in the northeastern U.S.: Isotopic constraints. Biogeochemistry, 57-58, 171-197.
- MacCrimmon H.R. and J.R.M. Kelso (1970). Seasonal variation in selected nutrients of a river system. J. Fish. Res. Board Can., 27, 837-846.
- McIlvin M.R. and M.A Altabet (2005). Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal. Chem., 77, 5589-5595.
- Metcalfe-Smith, J.L., G.L. Mackie, J. Di Maio and S.K. Staton (2000). Changes over time in the diversity and distribution of freshwater mussels (Unionidae) in the Grand River, Southwestern Ontario. J. Great Lakes Res., 26, 445-459.
- Murphy J. and Riley J.P. (1962). A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta, 27, 31-36.
- Murray M. (2008). Evaluating the isotopic fingerprint of wastewater treatment plant nitrogen and its evolution in the Grand River. BSc. Thesis, University of Waterloo, 45 p.
- Needoba J.A., N.A. Waser, P.J. Harrison and S.E. Calvert (2003) Nitrogen isotope fractionation in 12 species of marine phytoplankton during growth on nitrate. Mar. Ecol. Prog. Ser., 255, 81-91.
- Pritchard E. S. and R. D. Guy (2005). Nitrogen isotope discrimination in white spruce fed with low concentrations of ammonium and nitrate. Trees-Struct. Func., 19, 89-98.
- Regional Municipality of Waterloo (2011). Transportation and Environmental Services: Kitchener Wastewater Quality Data.
- Ribot M., E. Martí, D. von Schiller, F. Sabater, H. Daims and T.J. Battin (2012). Nitrogen processing and the role of epilithic biofilms downstream of a wastewater treatment plant. Freshwater Sci., 31, 1057-1069.
- Rosamond M.S., S. Thuss, S.L. Schiff and R.J. Elgood (2011) Coupled cycles of dissolved oxygen and nitrous oxide in rivers along a trophic gradient in Southern Ontario, Canada. J. Environ. Qual., 40, 256-270.
- Rott E., H.C. Duthie and E. Pipp (1998). Monitoring organic pollution and eutrophication in the Grand River, Ontario, by means of diatoms. Can. J. Fish. Aquat. Sci., 55, 1443-1453.
- Sabater S. and W. Admiraal (2005). Periphyton as Biological Indicators in Managed Aquatic Ecosystems. In: Periphyton: Ecology, Exploitation and Management.Azim M.E., M.C.J Verdegem, A.A. van Dam and M. Beveridge (Editors). CAB International, U.K., Chap. 9, pp.159-178.
- Scheiner D. (1976), Determination of ammonia and Kjeldahl nitrogen by indophenol method, Water Res., 10, 31-36.
- Scott J.T., J.A. Back, J.M. Taylor and R.S. King (2008). Does nutrient enrichment decouple algal-bacterial production in periphyton? J.N. Am. Benthol. Soc., 27, 332-344.
- Simon K.S., E.F. Benfield and S.A. Macko (2003). Food web structure and the role of epilithic biomass in cave streams. Ecology, 89, 2395-2406.
- Sosiak A. (2002). Long-term response of periphyton and macrophytes to reduced municipal nutrient loading to the Bow River (Alberta, Canada). Can. J. Fish. Aquat. Sci., 59, 987-1001.
- Spoelstra J., M. Murray and R.J Elgood (2006). A simplified diffusion method for delta15N analysis of NH4+. Environmental Geochemistry Lab Technical Procedure 20. Available from Department of Earth and Environmental Sciences, University of Waterloo.
- Sreenivasa M.R. and H.C. Duthie (1973). Diatom flora of the Grand River, Ontario, Canada. Hydrobiol., 42, 161-224.
- Udy J.W. and S.E. Bunn (2001). Elevated δ15N values in aquatic plants from cleared catchments: why? Mar. Freshwater Res., 52, 347-351.
- Vermaat J.E. (2005). Periphyton Dynamics and Influencing Factors. In: Periphyton: Ecology, Exploitation and Management. Azim M.E., M.C.J Verdegem, A.A. van Dam and M. Beveridge (Editors). CAB International, U.K., Chap. 3, pp. 35-50.
- Van den Meerscher K., P. Van Rijswijk, K Soetaert and J.J. Middelburg (2009). Autochthonous and allochthonous contributions to mesozooplankton diet in a tidal river and estuary: Integrating carbon isotope and fatty acid constraints. Limnol. Oceanogr., 54, 62-74.
- Yoneyama T., T. Omata, S. Nakata and J. Yazaki (1991). Fractionation of nitrogen isotopes during the uptake and assimilation of ammonia by plants. Plant Cell Physiol., 32, 1211-1217.