Abstracts
Abstract
In this work we present a case study of the multi-scale calibration and validation of MHYDAS-Erosion applied to a Mediterranean vineyard. The calibration was performed using expert knowledge in linking physical parameters to land uses with the automatic parameter estimation software PEST. MHYDAS-Erosion was calibrated and validated using spatially distributed observations on total discharge and soil loss. Calibration has been performed within six rainfall events; both hydrological and erosion parameters were calibrated using RMSE, R2 and the modified version of the Nash-Sutcliffe model efficiency criteria. Calibration results indicate there was good agreement between simulated and observed total discharge and total soil loss at the seven observation points (modified Nash-Sutcliffe efficiency (mNSE) ranging between 0.89 and 0.95). Acceptable results were obtained in terms of parameter values, identification of their physical meaning and coherence. However, some limitations were also identified, and could be remedied in more detailed studies involving (i) spatially-distributed rainfall on the catchment, (ii) a description of groundwater exfiltration and (iii) spatially-distributed properties of the ditches over the catchment. Validation results were quite satisfactory for three of the four validation events. The results from this case study suggest that MHYDAS-Erosion may need a specific calibration when applied to another catchment, but once it is calibrated, it could be used for multi-scale soil loss forecasting.
Keywords:
- erosion modelling,
- soil loss,
- hydrological processes,
- calibration and validation,
- PEST,
- MHYDAS-Erosion
Résumé
Ce travail présente une étude de cas qui traite du calage et de la validation multiéchelle du modèle MHYDAS-Erosion appliqué au bassin versant de Roujan, en France, occupé principalement par des vignobles. Pour le calage, les valeurs des paramètres touchant les cultures ont été estimées à partir des connaissances d’experts et du logiciel d’estimation des paramètres PEST. Des mesures de débits en rivière et de pertes de sol ont ensuite servi à caler le modèle. Six événements ont servi à effectuer le calage du modèle, et quatre ont été utilisés pour valider ce calage. L’intégrité physique des valeurs des paramètres a été respectée. Les résultats du calage indiquent que le modèle est très fidèle aux données observées pour sept points de contrôle distribués sur le bassin versant de Roujan. Les résultats de validation de MHYDAS-Erosion sur le bassin versant de Roujan sont acceptables pour trois des quatre événements choisis. Quelques éléments dans la procédure de calage du modèle pourraient être améliorés au cours d’études subséquentes. Notamment, nous avons constaté que les précipitations varient beaucoup dans le bassin versant de Roujan, et qu’il serait important de considérer cette variation spatiale pour des applications futures du modèle. Aussi, comme les écoulements hypodermiques représentent une grande partie du débit à l’exutoire du bassin versant pour certains événements, il serait préférable de spatialiser les propriétés du réseau de fossés de drainage plutôt que de les considérer uniformes sur l’ensemble du bassin, comme dans la présente étude. L’utilisation du modèle MHYDAS-Erosion sur un autre bassin versant nécessiterait un calage préalable de la valeur des paramètres. Une fois calé, le modèle permettrait d’estimer les pertes de sol pour différents secteurs du bassin versant. Il pourrait aussi servir à tester des scénarios de pratique de gestion bénéfique.
Mots clés:
- érosion hydrique,
- modélisation de l’érosion,
- hydrologie,
- calage et validation,
- PEST,
- MHYDAS-Erosion
Appendices
Bibliographical References
- BEVEN K.J. (1989). Changing ideas in hydrology: the case of physically based models. Hydrol. J., 105, 157-172.
- BENNETT J.P. (1974). Concepts of mathematical modeling of sediment yield. Water Resour. Res., 10, 485-492.
- BOARDMAN J. (2006). Soil erosion science: Reflections on the limitations of current approaches. Catena, 68, 73-86.
- BRAZIER R.E., K.J.BEVEN, J. FREER and J.S. ROWAN (2000). Equifinality and uncertainty in physically based soil erosion models: application of the glue methodology to wepp-the water erosion prediction project – for sites in the UK and USA. Earth Surf. Proc. Landforms, 25, 825-845.
- CHAHINIAN N.(2004). Paramétrisation multicritère et multiéchelle d’un modèle hydrologique spatialisé de crue en milieu agricole. Thèse de Doctorat, Université de Montpellier II, France, 323 p.
- CHAHINIAN N., R. MOUSSA, P. ANDRIEUX and M. VOLTZ (2006a). Accounting for temporal variation in soil hydrological properties when simulating surface runoff on tilled plots. J. Hydrol., 326, 135-15.
- CHAHINIAN N., M. VOLTZ, R. MOUSSA and G. TROTOUX (2006b). Assessing the impact of the hydraulic conductivity of a crusted soil on overland flow modelling at the field scale. Hydrol. Proc., 20, 1701-172.
- CHEVIRON B., S.J. GUMIERE, Y. LE BISSONNAIS, D. RACLOT and R. MOUSSA (2010). Sensitivity analysis of distributed erosion models - framework. Water Resour. Res., 46, W08508.
- CHEVIRON B., Y. LE BISSONNAIS, J.-F. DESPRATS, A. COUTURIER, S.J. GUMIERE, O. CERDAN, F. DARBOUX and D. RACLOT (2011). Comparative sensitivity analysis of four distributed erosion models, Water Resour. Res., 47, W01510.
- CITEAU L., A.M. BISPO, M. BARDY and D. KING (2008). Gestion durable des sols. QUAE RENAUD-BRAY (Éditeur), Versailles, 320 p.
- COURANT R., K. FRIEDRICHS and H. LEWY(1928). Über die partiellen differenzengleichungen der mathematischen physik. Math. Annal.,en 100, 32-74.
- DAWSON C., R. ABRAHART and L. SEE (2007). Hydrotest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Software, 22, 1034-1052.
- DE MARSILY G.(1994). On the use of models in hydrology [Free opinion] - De l’usage des modèles en hydrologie [Tribune libre]. Rev. Sci. Eau, 7, 219-234.
- DE ROO A.P.J. and V.G. JETTEN (1999). Calibrating and validating the LISEM model for two data sets from the Netherlands and South Africa. Catena, 37, 477-493.
- DE VENTE J. and J. POESEN (2005). Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth Sci. Rev., 71, 95-125.
- DOHERTY J. (2004). PEST - Model-independent parameter estimation, User Manual. Watermark Numerical Computing.
- FOSTER G.R., D.C. FLANAGAN, M.A. NEARING, L.J. LANE, L.M. RISSE and S.C. FINKNER (1995). Water erosion prediction project (WEPP): technical documentation. Tech. report. NSERL Report No. 10. National Soil Erosion Research Laboratory. USDA-ARS-MWA. 1196 Soil Building, West Lafayette, NO, USA, 47, 907-1196.
- GUMIERE S.J., M. MORAES and R.L. VICTORIA (2007). Calibration and validations of a soil-plant-atmosphere model at the national forest of tapajós, pará. Braz. J. Water Res., 1, 1-11.
- GUMIERE S.J., D. RACLOT, B. CHEVIRON, G. DAVY, X. LOUCHART, J.-C. FABRE, R. MOUSSA and Y.L. BISSONNAIS (2011). MHYDAS-erosion: a distributed single-storm water erosion model for agricultural catchments. Hydrol. Process., 25, 1717-1728.
- HÉBRARD O., M. VOLTZ, P. ANDRIEUX and R. MOUSSA (2006). Spatio-temporal distribution of soil surface moisture in a heterogeneously farmed Mediterranean catchment. J. Hydrol., 329, 110-121.
- HESSEL R., R. VAN DEN BOSCH and O. VIGIAK (2006). Evaluation of the LISEM soil erosion model in two catchments in the East African highlands. Earth Surf. Proc. Landforms, 31, 469-486.
- JETTEN V.G., A.P.J. DE ROO and D. FAVIS-MORTLOCK (1999). Evaluation of field-scale and catchment-scale soil erosion models. Catena, 3, 521-541.
- KLIMENT Z., J. KADLEC and J. LANGHAMMER (2008). Evaluation of suspended load changes using ANNAGNPS and SWAT semi-empirical erosion models. Catena, 73, 286-299.
- LAFLEN J.M., W.J. ELLIOT, D.C. FLANAGAN, C.R. MEYER and M.A. NEARING (1997). Wepp-predicting water erosion using a process-based model. J. Soil Water Conserv., 52, 96-102.
- LAGACHERIE P., M. RABOTIN, F. COLIN, R. MOUSSA and M. VOLTZ (2010). Geo-MHYDAS: a landscape discretization tool for distributed hydrological modeling of cultivated areas. Comput. Geosci., 36, 1021-1032, DOI: 10.1016/j.cageo.2009.12.005.
- LE BISSONNAIS Y., C. MONTIER, J. JAMAGNE, J. DAROUSSIN and D. KING (2002). Mapping erosion risk for cultivated soil in France. Catena, 46, 207-220.
- LE BISSONNAIS Y. and M. SINGER (1992). Crusting, runoff and erosion response to soil water content and successive rainfall events. Soil Sci. Soc. Am. J., 56, 1898-1903.
- MARQUARDT D.W.(1963). An algorithm for least-squares estimation of non-linear parameters. J. Soc. Ind. Appl. Math., 11, 431-441.
- MOREL-SEYTOUX H.J. (1978). Derivation of equations for variable rainfall infiltration. Water Resour. Res., 14, 561-568.
- MORGAN R.P.C. (2001). A simple approach to soil loss prediction: a revised Morgan-Morgan-Finney model. Catena, 44, 305-322.
- MOUSSA R. and C. BOCQUILLON (1996). Algorithms for solving the diffusive wave flood routing equation. Hydrol. Proc., 10, 105-124.
- MOUSSA R., M. VOLTZ and P. ANDRIEUX (2002). Effects of the spatial organization of agricultural management on the hydrological behaviour of a farmed catchment during flood events. Hydrol. Proc., 16, 393-412.
- NEARING M.A. (2000). Evaluating soil erosion models using measured plot data: accounting for variability in the data. Earth Surf. Proc. Landforms, 25, 1035-1043.
- R CORE TEAM (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/, (consulted in March 2013).
- SOULSBY R.L. (1997). Dynamics of marine sands: A manual for practical applications. Thomas Telford (Editor), London, UK, 250 p.
- TAKKEN I., L. BEUSELINCK, J. NACHTERGAELE, G. GOVERS, J. POESEN and G. DEGRAER (1999). Spatial evaluation of a physically-based distributed erosion model (LISEM). Catena, 37, 431-447.
- WAINWRIGHT J. and A. J. PARSONS (1998). Modelling soil erosion by water. In: Sensitivity of sediment-transport equations to errors in hydraulic models of overland flow,Springer-Verlag (Editor), Berlin, pp. 271-284.
- YAN F.-L., Z.H. SHI, Z.X. LI and C.F. CAI (2008). Estimating interrill soil erosion from aggregate stability of ultisols in subtropical China. Soil Till. Res., 100, 34-41.