Abstracts
Résumé
Les effluents issus des stations d’épuration des eaux usées industrielles et municipales contiennent des quantités non négligeables de polluants organiques, inorganiques et microbiens, qui sont rejetés dans l’environnement par voie directe, ou en suivant la filière de réutilisation (irrigation ou arrosage, etc.). Ces eaux résiduaires constituent l’une des principales sources de contamination des eaux de surface et souterraines (augmentation de la demande chimique en oxygène (DCO), coloration et eutrophisation des cours d’eau, etc.). Dans l’optique de palier le déficit croissant des ressources en eau destinées à la consommation humaine, ces eaux résiduaires sont de plus en plus soumises à des traitements poussés en vue d’une réutilisation. Cette réutilisation doit toujours être réalisée dans l’objectif de fournir une eau présentant, en continu, une qualité spécifique liée à l’usage attendu (eau de production, eau de lavage, eau de refroidissement, eau d’irrigation ou d’arrosage, etc.). Les procédés conventionnels peuvent s’avérer non adaptés, notamment par leur manque de fiabilité dans la qualité des eaux traitées et le risque encouru de contamination microbiologique. Pour faire face à cette importante problématique, les techniques membranaires, notamment les bioréacteurs à membrane (BRM), peuvent constituer une avenue potentielle de traitement et de réutilisation de ces effluents. L’intérêt de ces procédés réside dans leur aspect non polluant, leur facilité d’automatisation et leur capacité à éliminer simultanément les différents polluants en une seule étape de traitement. Ces technologies offrent la possibilité de clarifier et de désinfecter simultanément les eaux sans risque de formation de composés organo-halogénés. Dans cet article, les BRM sont situés par rapport aux techniques conventionnelles de traitement biologique d’effluents. Par la suite, un accent particulier est mis sur la présentation des connaissances actuelles concernant les principes de base des BRM, les critères d’application et les conditions d’opération qui influencent les performances de ces technologies. Les développements récents portant sur la modélisation mathématique de fonctionnement et de colmatage de ces modules sont également présentés. Finalement, les applications industrielles et les coûts d’implantation et d’opération de ces technologies sont brièvement discutés.
Mots-clés :
- Bioréacteur à membrane,
- biotraitement,
- membrane immergée,
- colmatage,
- polluant organique réfractaire,
- désinfection,
- polluant inorganique,
- eaux usées
Abstract
Effluents from urban and industrial wastewater treatment plants contain organic (e.g., COD, BOD, total suspended solids, endocrine disrupting compounds), inorganic (e.g., phosphorus, ammonia nitrogen, nitrites and nitrates, metals) and microbial pollutants (e.g., bacteria, viruses, parasites), which are either directly discharged into the environment or reused for agricultural purposes. These wastewaters are often responsible for pollution of surface and groundwater (increasing the COD, colour and eutrophication of water, for example). In the context of finding solutions for water shortages, wastewaters are more and more frequently subjected to tertiary treatment for water reuse. The treatment of wastewater for reuse must yield water that meets specific quality criteria and is adapted to be reused as washing water, cooling water, process water, irrigation water or sprinkling water, among other uses. Conventional processes can be inappropriate, notably because of their inability to provide a consistently good quality of treated-water and because of the associated risk of microbial contamination. An alternate method can be the application of membrane bioreactors (MBR) for wastewater treatment and reuse. MBR are characterized by ease of operation, ease of automation, negligible equipment requirements for adding chemicals and their capacity to remove simultaneously organic, inorganic and microbial pollutants in the same reactor. This technology offers the possibility to simultaneously clarify and disinfect wastewaters without any risk of forming organochlorinated compounds. In this paper, MBR are first compared to conventional biological treatments, followed by a particular emphasis on the present state of knowledge about MBR, criteria of application and operating conditions that greatly influence the performance of these technologies. Recent developments in the modelling of the operating process and membrane fouling are also presented. Finally, industrial applications and operating and implementation costs are briefly discussed.
Keywords:
- Membrane bioreactor,
- biotreatment,
- immersed membrane,
- fouling,
- refractory organic pollutant,
- disinfection,
- inorganic pollutant,
- wastewater
Appendices
Références bibliographiques
- AMEDEUS (2008). Accelerated membrane development for urban sewage purification. D38: Final report WP6 Implementation of submerged module inside or outside of reactor. Proposal/Contract no.: 018328 AMEDEUS.
- ANDREOZZI R., R. CESARO, R. MAROTTA et F. PIROZZI (2006). Evaluation of biodegradation kinetic constants for aromatic compounds by means of aerobic batch experiments. Chemosphere, 62, 1431-1436.
- BAEK S.H. et K.R. PAGILLA (2008). Simultaneous nitrification and denitrification of municipal wastewater in aerobic membrane bioreactors. Water Environ. Res., 80, 109-117.
- BARRIOS-MARTINEZ A., E. BARBOT, B. MARROT, P. MOULIN et N. ROCHE (2006). Degradation of synthetic phenol-containing wastewaters by BRM. J. Membr. Sci., 28, 288-296.
- BATTISTONI P., F. FATONE, D. BOLZONELLA et P. PAVAN (2006). Full scale application of coupled alternate cycles-membrane bioreactor (AC-BRM) process for wastewater reclamation and reuse. Water Pract. Technol., IWA Publishing, doi10.2166/wpt.2006.0077.
- BERLAND J.M. et C. JUERY (2002). Les procédés membranaires pour le traitement de l’eau. Document technique, FNDAE, No 14, Ministère de l’Agriculture, de l’Alimentation, de la Pêche et des Affaires rurales, Direction de l’Espace Rural et de la Forêt, France, 71 p.
- BIRIMA A.H., M.J. MEGAT MOHD NOOR, A.S. MUYIBI et A. IDRIS (2005). Simultaneous organic and nitrogen removal using anoxic-aerobic membrane bioreactor. Int. J. Eng. Technol., 2, 36-42.
- BREPOLS C., H. SCHÄFER et N. ENGELHARDT (2005). Hinweise zur verfahrenstechnischen Integration getauchter Membranfilter in kommunalen Membranbelebungsanlagen, KA - Abwasser, Abfall, 52, 45-50.
- BOUCHARD C., P. KOUADIO, D. ELLIS, M. RAHMI et R.E. LEBRUN (2000). Les procédés à membranes et leurs applications en production d'eau potable. Vecteur Environ., 33, 28-38.
- BRINDLE K. et T. STEPHENSON (1996). The application of membrane biological reactors for the treatment of wastewaters. Biotechnol. Bioeng., 49, 601-610.
- BUISSON H., T. LEBEAU, C. LELIEVRE et L. HRREMANS (1998). Les membranes : Point sur les évolutions d'un outil incontournable en production d'eau potable.Eau, Industrie, Nuisances, 210, 42-47.
- CARBALLA M., F. OMIL et J.M. LEMA (2005). Removal of cosmetic ingredients and pharmaceuticals in sewage primary treatment. Water Res., 39, 4790-4796.
- CARDOT C. (1999). Les traitements de l’eau : Procédés physico-chimiques et biologiques. Cours et problèmes résolus, ELLIPSES MARKETING (Éditeur), Technosup, Paris, France, 256 p.
- CHANG H.-S., K.-H. CHOOA, B. LEEB et S.-J. CHOIA (2009). Review: The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. J. Hazard. Mater., 172, 1-12.
- CHANG I.S. et S.N. KIM (2005). Wastewater treatment using membrane filtration effect of biosolids concentration on cake resistance. Process Biochem., 40, 1307-1314.
- CHANG I.S., C.H. LEE et K.H. AHN (1999). Membrane filtration characteristics in membrane coupled activated sludge system: The effect of floc structure on membrane fouling. Sepac. Sci. Technol., 34, 15-30.
- CHEE-SANFORD J.C., R.I. ARMINOV, I.J. KRAPAC, N. GARRIGUES-JEANJEAN et R.I. MACKIE (2001). Occurrence and diversity of tetracycline resistance genes in lagoon and groundwater underlying two swine production facilities. Appl. Environ. Microbiol., 67, 1494-1502.
- CHEN J., X. HUANG et D. LEE (2008). Bisphenol A removal by a membrane bioreactor. Process Biochem., 43, 451-456.
- CHO B.D. et A.G. FANE (2002). Fouling transients in nominally sub-critical flux operation of a membrane bioreactor. J. Membr. Sci., 209, 391-403.
- CHOI H., D.D. DIONYSIOS, D.B. OERTHER et G.A. SORIAL (2005). Influence of cross flow velocity on membrane performance during filtration of biological suspension. J. Membr. Sci., 248, 189-199.
- CHOO K.H. et C.H. LEE (1996). Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor. Water Res., 30, 1771-1780.
- CICEK N., H. WINNEN, M.T. SUIDAN, B.E. WRENN, V. URBAIN et J. MANEM (1998). Effectiveness of the membrane bioreactor in the degradation of high molecular weight compounds. Water Res., 32, 1553-1563.
- CIRJA M., P. IVASHECHKIN, A. SHAFFER et P.F.X. CORVINI (2008). Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (BRM). Rev. Environ. Sci. Biotechnol., 7, 61-78.
- CLARA M., B. STRENN, M. AUSSERLEITNER et N. KREUZINGER (2004). Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional wastewater treatment plant. Water Sci. Technol., 50, 29-36.
- CLARA M., B. STRENN, O. GANS, E. MARTINEZ, N. KREUZINGER et H. KROISS (2005a). Removal of selected pharmaceuticals, frangrances and endocrine disrupting compounds in membrane bioreactor and conventional wastewater treatment plant. Water Res., 39, 4797-4807.
- CLARA M., N. KREUZINGER, B. STRENN, O. GANS et H. KROISS (2005b). The solids retention time - a suitable design parameter to evaluate the capacity of wastewater treatment plant to remove micropollutants. Water Res., 39, 97-106.
- COMEAU Y. (2006). Traitement tertiaire (polissage) du lisier de porc par un bioréacteur à membranes(BRM) immergées. Rapport No 703035, École Polytechnique de Montréal, Montréal, QC, Canada, 142 p.
- COTE P., H. BUISSON, C. POUND et G. ARAKAKI (1997). Immersed membrane activated sludge for the reuse of municipal wastewater. Desalination, 113, 189-196.
- DEFRANCE L. et M.Y. JAFFRIN (1999). Reversibility of fouling formed in activated sludge filtration. J. Membr. Sci., 157, 73-84.
- DEFRANCE L., M.Y. JAFFRIN, B. GUPTA, P. PAULLIER et V. GEAUGEY (2000). Contribution of various constituents of activated sludge to membrane bioreactor fouling. Bioresour. Technol., 73, 105-112.
- DELGADO S., F. DIAZ, R. VILLARROEL, L. VERA, R. DIAZ et S. ELMALEH (2002). Nitrification in a hollow-fibre membrane bioreactor. Desalination, 146, 445-449.
- DHAOUADI H. et B. MARROT (2008). Olive mill wastewater treatment in a membrane bioreactor: Process feasibility and performances. Chem. Eng. J., 145, 225-231.
- ESPLUGAS S., D.M. BILA, L.G.T. KRAUSE et M. DEZOTTI (2007). Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J. Hazard. Mater., 149, 631-642.
- EUROMBRA (2006). Membrane bioreactor technology (MBR) with an EU perspective for advanced municipal wastewater treatment strategies for the 21st century. D16 – Cost analysis, literature data (incl. pilot plant trials conducted by partners). Projet No 018480, European Commission.
- FANE A.G., C.J.D. FELL et M.T. NOR (1980). Ultrafiltration/activated sludge system - development of a predicted model. Dans : Ultrafiltration Membranes and Applications. Cooper A.R. (Éditeur), Plenum Press, New York, NY, États-Unis, pp. 631-648.
- GANDER M., B. JEFFERSON et S. JUDD (2000). Aerobic MBRs for domestic wastewater treatment: a review with cost considerations. Sepac. Purif. Technol., 18, 119-130.
- GARCIA M.T., E. CAMPOS, M. DALMAUl, I. RIBOSA et J. SANCHEZ-LEAL (2002). Structure activity relationships for association of linear alkylbenzene sulfonates with activated sludge. Chemosphere, 49, 279-286.
- GERECKE A.C., M. SCHARER, H.P. SINGER, S.R. MULLER, R.P. SCHWARZENBACH, M. SAGESSER, U. OCHSENBEIN et G. POPOW (2002). Sources of pesticides in surface waters in Switzerland: Pesticide load through wastewater treatment plants current situation and reduction potential. Chemosphere, 48, 307-315.
- GIGER W., A.C. ALDER, E.M. GOLET, H.P.E. KOHLER, C.S. McARDELL, E. MOLNAR, H. SIEGRIST et M.J.F. SUTER (2003). Occurrence and fate of antibiotics as trace contaminants in wastewaters, sewage sludges and surface waters. Chimia, 59, 485-491.
- GOGATE P.R. et A.B. PANDIT (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv. Environ. Res., 8, 501-551.
- GRASMICK A., C. CABASSUD, M. SPÉRANDIO et C. WISNIEWSKI (2009). Les bioréacteurs à membrane appliqués au traitement des eaux usées. Les techniques de l'ingénieur, Réf. W4140, Service Relations Clients, Éditions Techniques de l'ingénieur, Paris, France.
- HENZE M., P.L. GRADYC, W. GUJER, G.V.R. MARAIS et T. MATSUO (1987). Activated sludge model No 1. IAWPRC Scientific and Technical Reports No 1, Londres, Royaume-Uni.
- HERBERT D. (1958). Some principles of continuous culture. Dans : Recent Progress in Microbiology. 7th International Congress on Microbiology, G. Tunevall (Éditeur), Almquist et Wiksell, Stockholm, Suède, pp. 381-396.
- HOLAKOO L., G. NAKHLA, A.S. BASSI et E.K. YANFUL (2007). Long term performance of BRM for biological nitrogen removal from synthetic municipal wastewater. Chemosphere, 66, 849-857.
- HU J.Y, X. CHEN, G. TAO et K. KEKRED (2007). Fate of endocrine disrupting compounds in membrane bioreactor systems. Environ. Sci. Technol., 41, 4097-4102.
- IKEHATA K et M.G. EL-DIN (2006) Aqueous pesticide degradation by hydrogen peroxide/ultraviolet irradiation and Fenton-type advanced oxidation processes: a review. J. Environ. Eng. Sci., 5, 81-135.
- ILANI T., E. SCHULZ et B. CHEFETZ (2005). Interactions of organic compounds with wastewater dissolved organic matter: role of hydrophobic fractions. Environ. Qual., 34, 552-562.
- JAWAD H.A.R. (2008). Performance of water recycling technology. Thèse de doctorat, University of Wollongong, No 43434677, New South Wales, Australie, 172 p.
- JUDD S. (2008). The status of membrane bioreactor technology. Trends Biotechnol., 26, 109-116.
- KAAM R.V., D. ANNE-ARCHARD, M. ALLIET, S. LOPEZ et C. ALBASI (2006). Aeration mode, shear stress and sludge rheology in a submerged membrane bioreactor: some keys of energy saving. Desalination, 199, 482-484.
- LEBEGUE L., M. HERAN, A. GRASMICK (2009).Membrane air flow rates and HF sludging phenomenon in SMBR. Desalination, 236, 135-142.
- LE-CLECH P., V. CHEN et A.G. FANE TONY (2006). Fouling in membrane bioreactors used in wastewater treatment (review). J. Membr. Sci., 28, 17-53.
- LEE J., B.C. LEE, J.S. RA, J. CHO, I.S. KIM, N.I. CHANG, H.K. KIM et S.D. KIM (2008). Comparison of the removal efficiency of endocrine disrupting compounds in pilot scale sewage treatment processes. Chemosphere, 71, 1582-1592.
- LEE W., S. KANG et H. SHIN (2003). Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors. J. Membr. Sci., 216, 217-227.
- LEE Y., J. CHO, Y. SEO, J.W. LEE et K.H. AHN (2002). Modelling of submerged membrane bioreactor process for wastewater treatment. Desalination, 146, 451-457.
- LESAGE N., M. SPÉRANDIO et C. CABASSUD (2005). Performances of a hybrid adsorption/submerged membrane biological process for toxic waste removal. Water Sci. Technol., 51, 173-180.
- LESJEAN B. et E.H. HUISJES (2008). Survey of the European BRM market: trends and perspectives. Desalination, 231, 71-81.
- LESJEAN B., V. FERRE, E. VONGHIA et H. MÖSLANG (2008). Market and design considerations of the 37 larger MBR plants in Europe. Dans : EDS MDIW08 Conference, 20-22 octobre,Toulouse, France.
- LI X., F. GAO, Z. HUA, G. DU et J. CHEN (2005). Treatment of synthetic wastewater by a novel MBR with granular sludge developed for controlling membrane fouling. Sepac. Purif. Technol., 46, 19-25.
- LI X.Y. et H.P. CHU (2003). Membrane bioreactor for the drinking water treatment of polluted surface water supplies. Water Res., 37, 4781-4791.
- LI X.Y. et X.M. WANG (2006). Modelling of membrane fouling in a submerged membrane bioreactor. J. Membr. Sci., 278, 151-161.
- LIANG S., L. SONG, T. TAO, K.A. KEKRE et H. SEAH (2006). A modeling study of fouling development in membrane bioreactors for wastewater treatment. Water Environ. Res., 78, 853-863.
- LINDBERG R.H., U. OLOFSSON, P. RANDAHL, M. JOHANSSON, M. TYAKLIND et B.A.V. ANDERSSON (2006). Behaviour of fluoroquinolones and trimethoprim during mechanical, chemical and activated sludge treatment of sewage and digestion of sludge. Environ. Sci. Technol., 40,1042-1048.
- LIU R., X. HUANG, Y.F. SUN et Y. QIAN (2003). Hydrodynamic effect on sludge accumulation over membrane surfaces in a submerged membrane bioreactor. Proc. Biochem., 39(2), 157-163.
- LIU Z. H, Y. KANJO et S. MIZUTANI (2009). Removal mechanisms for endocrine disrupting compounds (EDCs) in wastewater treatment-physical means, biodegradation, and chemical advanced oxidation: A review. Sci. Total Environ., 40, 731-748.
- LOBOS J., M. HERAN et A. GRASMICK (2009), Optimization of the operations conditions in membrane bioreactors through the use of ASM3 model simulations. Desalin.Water Treat., 9, 126-130.
- LYKO S., T. WINTGENS et T. MELIN (2005). Estrogenic trace contaminants in wastewater - Possibilities of membrane bioreactor technology. Desalination, 178, 95-105.
- LYMAN W.J. (1990). Handbook of chemical property estimation methods: Environmental behavior of organic compounds. American Chemical Society, Washington, DC, États-Unis, pp. 1.1-1.54.
- MARROT B., A. BARRIOS-MARTINEZ, P. MOULIN et N. ROCHE (2004). Industrial wastewater treatment in a membrane bioreactor: A review. Environ. Prog., 23, 59-68.
- MATOSIC M., M. VUKOVIC, M. CURLIN et I. MIJATOVIC (2008). Fouling of hollow fiber submerged membrane during a long-term filtration activated sludge. Desalination, 219, 57-65.
- MCBRIEN M.A., E. KOLOVANOV et V. TASHLTSSKY (2004). Application of structure - based pKa perdiction to reverse phase chromatigraphic method development. Ad. Chem. Dev., http://www.acdlabs.com/download/publ/2004/cpsa04_pka.pdf.
- MELIN T., B. JEFFERSON, D. BIXIO, C. THOEYE, W. DE WILDE, J. DE KONING, J. VAN DER GRAAF et T. WINTGENS (2006). Membrane bioreactor technology for wastewater treatment and reuse. Desalination, 187, 271-282.
- MENG F., H. ZHANG, Y. LI, X. ZHANG et F. YANG (2005). Application of fractal permeation model to investigate membrane fouling in membrane bioreactor. J. Membr. Sci., 262, 107-116.
- METCALF et EDDY INC. (2003). Wastewater Engineering. McGraw Hill, New York, NY, États-Unis, 1819 p.
- MOULIN C. (1990). Potabilisation d’une eau de surface par filtration tangentielle sur membrane minérale : étude de traitements physico-chimiques associés. Thèse de doctorat, Université Montpellier, Montpellier, France, 180 p.
- NAGANO A., E. ARIKAWA et H. KOBAYASHI (1992). The treatment of liquor wastewater containing high strength suspended solids by membrane bioreactor system. Water Sci. Technol., 26, 887-895.
- NG A.N.L. et A.S. KIM (2007). A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters. Desalination, 212, 261-281.
- OGNIER S., C. WISNIEWSKI et A. GRASMICK (2004). Membrane bioreactor fouling in sub-critical filtration conditions: a local critical flux concept. J. Membr. Sci., 229, 171-177.
- ORANTES J., C. WISNIEWSKI, M. HERAN et A. GRASMICK (2006). The influence of operating conditions on permeability changes in a submerged membrane bioreactor. Sepac. Purif. Technol., 52, 60-66.
- PARSONS S. (2004). Advanced oxidation processes for water and wastewater treatment. IWA Publishing, Alliance House, Londres, Angleterre, 356 p.
- PELLEGRIN M.L., C. WISNIEWSKI, A. GRASMICK, A. TAZI-PAIN et H. BUISSON (2002). Sequenced aeration in a membrane bioreactor: specific nitrogen removal rates. Can. J. Chem. Eng., 80, 386-392.
- PIRT S.J. (1965). The maintenance energy of bacteria in growing cultures. Proc. Royal Soc.London, 163(B), 224-231.
- POCHANNA K., J. KELLER et P. LANT (1999). Model development for simultaneous nitrification and denitrification. Water Sci. Technol., 39, 235-243.
- POUET M.F., F. PERSIN et M. RUMEAU (1992). Intensive treatment by electrocoagulation-flottation-tangential flow microfiltration areas of high seanoal population. Water Sci. Technol., 25, 247-253.
- RACZ L.A. et R.K. GOEL (2010). Fate and removal of estrogens in municipal wastewater. J. Environ. Monit., 12, 58-70.
- RAMIREZ J.A. et R.H. DAVIS (1998). Application of cross-flow microfiltration with rapid backpulsing to wastewater treatment. J. Hazard. Mater., B(36), 179-197.
- REEMTSMA T., B. ZYWICKI, M. STUEBER, A. KLOEPFER et M. EKEL (2002). Removal of sulphur-organic polar micropollutants in a membrane bioreactor treating industrial wastewater. Environ. Sci. Technol., 36, 1102-1106.
- SNYDER S. A., P. WESTERHOFF, Y. YOON et D. SEDLAK (2003). Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ. Eng. Sci., 20, 449-469.
- SORENSEN H.B. et E.S. JORGENSEN (1993). The removal of nitrogen compounds from wastewater. Elsevier Science (Éditeur) B.V., Amsterdam, Pays-Bas, 119 p.
- STEPHENSON T., S. J JUD, B. JEFFERSON et K. BRINDLE (2000). Membrane bioreactors for wastewater treatment. IWA (Éditeur), Londres, Royaume-Uni, 192 p.
- TAO G., K. KEKRE, Z. WEI, T.C. LEE, B. VISWANATH et H. SEAH (2005). Membrane bioreactors for water reclamation. Water Sci. Technol., 51, 431-440.
- TARDIEU E., A. GRASMICK, V. GEAUGEY et J. MANEM (1999). Influence of hydrodynamics on fouling velocity in a recirculated MBR for wastewater treatment. J. Membr. Sci., 156, 131-140.
- TIXIER C., H.P. SINGER, S. OLLERS et S.R. MULLER (2003). Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ. Sci. Technol., 37, 1061-1068.
- VAN BENTEM A.G.N., C.P. PETRI, P.F.T. SCHYNS et H. F. VAN DER ROEST (2007). Membrane bioreactors. Operation and results of an MBR wastewater treatment plant. STOWA report, IWA (Éditeur), London, UK, 108 p.
- VERA L., R. VILLAROEL-LOPEZ, S. DELGADO et S. ELMALEH (1997). Cross-flow microfiltration of biologically treated wastewater. Desalination, 114, 65-75.
- VERA L., R. VILLARROEL, S. DELGADO et S. ELMALEH (2000). Enhancing microfiltration through an inorganic tubular membrane by gaz sparging. J. Membr. Sci., 165, 47-57.
- WINTGENS T., J. ROSEN, T. MELIN, C. BREPOLS, K. DRENSLA et N.ENGELHARDT (2003). Modelling of a membrane bioreactor system for municipal wastewater treatment. J. Membr. Sci., 216, 55-65.
- WINTGENS T., M.GALLENKEMPER et T. MELIN (2002). Endocrine disrupter removal from wastewater using membrane bioreactor and nanofiltration technology. Desalination, 146, 387-391.
- XING C.H., E. TARDIEU, Y. QIAN et X.H.WEN (2000). Ultrafiltration membrane bioreactor for urban wastewater reclamation. J. Membr. Sci., 177, 73-82.
- YAMAMOTO K., M. HIASA, T. MAHMOOD et T. MATSUO (1989). Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Water Sci. Technol., 21, 43-54.
- YANG W. et N. CICEK (2008). Treatement of swine water by submerged membrane bioreactors with consideration of estrogenic activity removal. Desalination, 231, 200-208.
- YANG W., N. CICEK et J. ILG (2006). State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America. J. Membr. Sci., 270, 201-211.
- YU Z. et W. HUANG (2005). Competitive sorption between 17-alpha-ethinyl estradiol and naphthalene/phenanthrene by sediments. Environ. Sci. Technol., 39, 4878-4885.
- YU K., X. WEN, Q. BU et H. XIA (2003). Critical flux enhancements with air sparging in axial hollow fibers cross-flow microfiltration of biological treated wastewater. J. Membr. Sci., 224, 69-79.
- ZAVISKA F., P. DROGUI, G. MERCIER, et J.-F. BLAIS (2009). Procédé d’oxydation avancée dans le traitement des eaux et des effluents industriels : Application à la dégradation des polluant réfractaires. Rev. Sci. Eau, 22, 535-564.
- ZHANG D. et W. VERSTRAETE (2002). The treatment of high strength wastewater containing high concentrations of ammonium in a staged anaerobic and aerobic membrane bioreactor. J. Environ. Eng. Sci., 1, 303-310.
- ZHANG S., F. YANG, Y. LIU, X. ZHANG, Y. YAMADA et K. FURUKAWA (2006). Performance of a metallic membrane bioreactor treating simulated distillery wastewater at temperatures of 30 to 45oC. Desalination, 194, 146-155.
- ZUEHLKE S., U. DUENNBIER, R. LESJEAN et H. BUISSON (2006). Long-term comparison of trace organics removal performances between conventional and membrane activated sludge processes. Water Environ. Res., 78, 2480-2486.