Abstracts
Résumé
La présente étude porte sur les potentialités de la lignine issue de la cuisson sulfate de l’alfa grass à éliminer le Cr (VI) des solutions aqueuses. Les variations du pH, de la concentration initiale du Cr (VI), de la température, du temps de contact, de la dose de l’adsorbant et leurs effets sur la capacité d’adsorption sont vérifiés expérimentalement. L’adsorption du Cr (VI) sur la lignine est maximale en milieu acide de pH = 2. Elle est optimale à une concentration initiale Cr (VI) de 180 mg•L-1, une dose de lignine de 4 g•L-1 et à un temps de contact maximal de 80 min. Les résultats de l’étude sont exploités à l’aide des équations de Langmuir, de Lagergren et d’Arrhenius afin de déterminer les divers paramètres d’équilibre tels que la capacité maximale d’adsorption, l’énergie d’adsorption, d’interaction et d’activation et les constantes d’équilibre adsorbat-adsorbant. L’application du modèle de Langmuir pour les données expérimentales d’isotherme d’adsorption a permis d’obtenir une capacité maximale d’adsorption de 75,8 mg•g-1 à 40 °C. Le paramètre sans dimension (RL) dont les valeurs sont situées entre 0,060 et 0,818 (0<RL<1) indique une adsorption du Cr (VI) par la lignine effective. Les paramètres thermodynamiques obtenus révèlent que l’adsorption est spontanée et endothermique. L’interaction de la lignine avec les ions chromate est rapide et sa cinétique suit l’équation de vitesse de sorption réversible de deuxième ordre de Lagergren dont les constantes de vitesse d’adsorption à l’équilibre augmentent en même temps que la température.
Cette étude confirme que la lignine possède un potentiel d’adsorption important faisant d’elle un moyen efficace pour l’élimination du Cr (VI) des solutions aqueuses.
Mots-clés :
- Lignine,
- Adsorption,
- Isotherme,
- Cinétique,
- Chrome (VI),
- Elimination,
- Solution
Abstract
Activated lignin with a surface area of 1023 m2•g-1 was prepared from sulfate lignin that was treated by 30% H2O2 and carbonized at 300°C, in order to test the adsorption of chromium (VI) from aqueous solution. The influence of contact time, pH, initial concentration of adsorbent and adsorbate, and temperature on the adsorption capacity were investigated. The maximum removal of Cr (VI) was found to be 92% at pH = 2 and with a contact time of 80 min. Optimal concentrations of lignin and Cr (VI) were found to be 4 g•L-1 and 180 mg•L-1, respectively. The adsorption kinetics were tested according to pseudo-first-order and pseudo-second-order equations. The analytical data fitted a pseudo-second-order equation well, and the rate of removal of chromium was found to increase with increasing temperature. The activation energy for the adsorption process was found to be 18.19 kJ•mol-1. The Langmuir and Freundlich adsorption isotherm models were applied to describe the isotherm and to obtain the isotherm constants for the adsorption of Cr (VI) on lignin. These constants and correlation coefficients of the isotherm models were calculated and compared. Results indicated that Cr (VI) uptake could be described by the Langmuir adsorption model. The maximum adsorption capacity (qm) of Cr (VI) on lignin was 75.8 mg•g-1 at a temperature of 40°C. The dimensionless equilibrium parameter (RL) signified a favorable adsorption of Cr (VI) on lignin and was found to lie between 0,060 and 0,818 (0< RL<1). The thermodynamic parameters ΔG°, ΔS° and ΔH° were calculated and it was shown that the reaction was spontaneous and endothermic in nature. This study indicates that lignin has the potential to become an effective adsorbent for removal of Cr (VI) from waste water.
Keywords:
- Lignin,
- Adsorption,
- Isotherm,
- Kinetics,
- Chromium (VI),
- Removal,
- Aqueous solution
Appendices
Références bibliographiques
- Abul Hossain M., M. Kumita, Y. Michigami et S. Mori (2005). Optimization of parameters for Cr (VI) adsorption on used black tea leaves. Adsorption, 11, 561-568.
- Anbalagan K. et J.C. Juliet (2004). Adsorption of Cr (VI) ion into activated alma dust, adsorption isotherms and kinetics. India. J. Chim., 43A(1), 45-50.
- Arivoli S., M. Hema, M. Karuppaiah et S. Saravanan (2008). Adsorption of chromium ion by acid activated low cost carbon-Kinetic, mechanistic, thermodynamic and equilibrium studies. E-J. Chem., 5, 820-831.
- Babu B. V. et S. Gupta (2008). Adsorption of Cr (VI) using activated neem leaves: Kinetic studies. Adsorption, 14, 85-92.
- Babel S. et T.A. Kurmiawan (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater., 97, 219-243.
- Baral S.S., S.N. Das, G.R Chandhury et P. Rath (2008). Adsorption of Cr (VI) by treated weed salvinia cucullata: Kinetics and mechanism. Adsorption, 14, 111-121.
- Blais J.F., S. DufreSne et G. Mercier (1999). État du développement technologique en matière d’enlèvement des métaux des effluents industriels. Rev. Sci. Eau,12, 689-713.
- Brito F., J. Ascno et S. Mateo (1997). Equilibrium of Cr (VI) species in acid medium and adsorption studies of these species. Polyhedron, 16, 3835-3846.
- Cotton F.A. et G.W. Wilkinson (1972). Advanced inorganic chemistry. 3e édition, Wiley (Éditeur), New York, pp 828-833.
- Dakiki M., M. Khamis, A. Menassera et M. Merab (2002). Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv. Environ. Res., 6 533-540.
- Dogan M., M. Alkan, A. Turkyilmaz et Y. Ozdemir (2004). Kinetics and mechanism of removal methylene blue by adsorption onto perlite. J. Hazard. Mater., 109, 141-148.
- Demirbas A. (2004). Adsorption of lead and cadmium ions in aqueous solutions into modified lignin from alkali glycerol delignification. J. Hazard. Mater., 109, 221-226.
- Demirbas M., M. Kobya, E. Sinturk et T. Ozkan (2004). Adsorption kinetics for removal of Cr (VI) from aqueous solutions on the activated carbons prepared from agricultural wasts. Water SA, 3, 533-539.
- Devaprasath P.M., J.S. Solomon et B.V. Thomas (2007). Removal of Cr (VI) from aqueous solution using natural plant material. J. Appl. Sci. Environ. Sanita., 2, 77-83.
- Khraisheh M.A., Y.S. Al-degs, S. J Allen et N.M. Ahmed (2002). Elucidation of controlling steps of reactive dye adsorption on activated carbon. Ind. Eng. Chem. Res., 41, 1651-1657.
- Krishnan K.A. et T.S. Anirudhan (2003). Removal of cadmium (II) from aqueous water solution by steam-activated sulfurized carbon prepared from sugar-cane bagasse pith: Kinetics and equilibrium studies. Water SA, 29, 147-156.
- Li Q., J. Zhai, W. Zhang, M. Wan et J. Zhou (2007). Kinetic studies of adsorption of Pb (II), Cr (VI) and Cu (II) from aqueous solution by sawdust and modified peanut husk. J. Hazard. Mater., 141, 163-167.
- Liliana M.B. et C.U. Eliseo ( 2008). Hexavalent chromium removal by a Trichoderma inhamatum fungal strain isolated from tannery effluent. Water Air Soil Pollut. ., 187, 327-336.
- Mohan D., K.P. Singh et V.K. Singh ( 2006). Trivalent chromium removal from waste water using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloths. J. Hazard. Mater., 135, 280-295.
- Montiel V., G. Garcia, G. Gonzalez et J.R. Perez Mallol (2000). Étude de viabilisation d’un traitement des eaux résiduaires industrielles par voie electrochimique. J. New Mater. Electrochim. Syst., 3, 269-274.
- Mazourova E.B., B.C. Tempov et N.C. Pifansieva (2003). Modification of activated carbon. J. Wood Chem., Russia, 2, 62-77.
- Nakano Y., M. Tanaka, Y. Nakamira et M. Konno (2000). Removal and recovery system hexavalent chromium from waste water by tannin gel particles. J. Chem. Eng., Japan, 33, 747-752.
- Nameni M., M.R. Alavi Moghadam et M. Arami (2008). Adsorption of hexavalent chromium from aqueous solutions by wheat bran. Int. J. Environ. Sci. Tech., 5, 161-168.
- Oliveira E.A., S.F. Montanber, A.D. Andrade, J.A. Nobrega et M.E. Rollemberg (2005). Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Proc. Biochem., 40, 3485-3490.
- Parcker D., Y.S. Yun et J.M. Parker (2001). Removal of chromium with Echlonia biosorbent. Dans : 14th International Biohydrometalurgy Symposium, Ouro Preto, Brazil, pp. 513-520.
- Park S.J. et W.Y. Jung (2001). Removal of chromium by activated carbon fibers plated with copper metal. Carbon Sci., 2, 15-21.
- Quilntana M., G. Curutchet et E. Donati (2001). Factors affecting chromium (VI) reduction by Thiobacillus Ferrooxidans. Biochim. Eng. J., 9, 11-15.
- Rawat N. S. et D. Singh (1992). Removal of chromium (VI) on bituminous coal. Asian Environ., 14, 30-41.
- Sanchez-polo M. et J. Rivera-Ultrilla (2002). Adsorbent-adsorbate interaction in the adsorption of Cd (II) and Hg (II) on ozonized activated carbon. Environ. Sci. Technol., 36, 3850-3854.
- Sakanen K.V. et C.H. Luding (1971). Lignins: Occurrence, formation, structure and reaction, Wiley Interscience (Éditeur), New York, 380 p.
- Sharma D.C. et C.F. Forster (1994). A preliminary examination into the adsorption of Cr (VI) using low-cost adsorbents. Biores. Technol., 47, 257-264.
- Smith W.A., W.A. Apel, J.N. Petersen et B.M. Peyton (2002). Effect of carbon and energy resource on bacterial chromate reduction. Bioremed. J.,6, 205-215.
- Srivastava S.K., A.K. Singk et S. Ashutosh (1994). Studies on the uptake of lead and zinc by lignin obtaining of black liquor - paper industry waste material. Environ. Technol. ,15, 353-360.
- Suhas P.J., M.M. Carrott et C. Ribeiro (2007). Lignin from natural adsorbent to activated carbon: A review. Biores. Technol., 98, 2301-2312.
- Wang X.S., Y.P. Tang et S.R. Tao (2008). Removal of Cr (VI) from aqueous solutions by the nonliving biomass of alligator weed: Kinetics and equilibrium. Adsorption, 14, 823-830.
- Weng C.H., Y.C. Sharma et S.H. Chu (2008). Adsorption of Cr (VI) from aqueous solution by spent activated clay. J. Hazard. Mater. ,155, 65-75.
- Wu Y., S. Zhang, X. Guo et H. Huang (2008). Adsorption of chromium (III) on lignin. Biores. Technol., 99, 7709-7715.
- Yasin Y., M.Z. Hussein et F. Hj Ahmad (2007). Adsorption of methylene blur onto treated activated carbon. Malaysian J. Anal. Sci., 11, 400-406.
- Yong S., J.P. Zhang, G. Yang et Z.H. Li (2006). Removal of pollutants with activated carbon produced from K2CO3 activated of lignin from reed black liquors. Chem. Biochem. Eng., 20, 429-435.