Abstracts
Abstract
In arid regions such as near Sfax (Tunisia), treated wastewater effluents (TWE) are often applied as agricultural irrigation. Irrigation TWE usually contain large amounts of carbon, nitrogen and sodium. The objective of this study was to evaluate the impact of TWE irrigation on soil salinity and sodicity. In the city of Sfax, two sites were selected with two soil types (fluvisol and calcisol) having been irrigated for 4 and 15 years respectively. Soils were sampled at three different depths (0-30, 30-60 and 60-90 cm) in the TWE irrigated area and in a non-irrigated control area. Irrigated and non-irrigated study soils were analyzed for pH, nitrate and ammonia, electrical conductivity (ECs), exchangeable sodium percentage (ESP), sodium absorption ratio (SAR) and soil organic matter.
The fluvisol, irrigated for only four years, is more affected by salinity than the calcisol irrigated for 15 years. In the upper fluvisol layer irrigated by the treated wastewater, ECs reach 8 mS•cm-1 and ESP a value of 15% while in all layers of the calcisol, ECs and ESP are lower and rarely exceed 4 mS•cm-1 and 6% respectively. This result is due to a combination of factors in the fluvisol treatment area including texture, cation exchange capacity, irrigation procedure and crop management.
Keywords:
- wastewater,
- irrigation,
- calcisol,
- fluvisol,
- exchangeable sodium,
- sodium absorption ratio
Résumé
Dans les régions arides telles que le cas de Sfax (Tunisie), les eaux usées traitées (EUT) sont souvent utilisées en irrigation agricole. Généralement, les EUT sont riches en composés organiques, en azote et en sodium. L’objectif de cette étude est d’évaluer l’impact de l’irrigation par les EUT sur la salinité et la sodicité des sols. Dans la région de Sfax, deux sites ont été sélectionnés, représentant deux types de sols différents (fluvisol et calcisol) irrigués par les EUT, respectivement depuis 4 et 15 ans. Des échantillons des sols ont été prélevés systématiquement à trois profondeurs différentes (0-30, 30-60 et 60-90 cm) au niveau des parcelles irriguées et sur des placettes contrôle non irriguées (témoin). Sur chaque échantillon composite de sol, les pH (eau, KCl), teneurs en nitrate et ammonium, capacité d’échange cationique (CEC), conductivités électriques (CEs), taux de sodium échangeable (ESP), ratios d’absorption de sodium et teneurs en matières organiques ont été mesurés.
Le fluvisol, irrigué depuis seulement quatre ans, est plus affecté par la salinité que le calcisol, irrigué depuis 15 ans. Dans les niveaux de surface du fluvisol, la CEs et l’ESP ont atteint les seuils critiques de 8 mS•cm-1 et 15 % respectivement, alors qu’au niveau du calcisol, la CEs et l’ESP sont plus faibles et dépassent rarement 4 mS•cm-1 et 5 % respectivement. Pour le fluvisol, ce résultat est dû à la combinaison de plusieurs facteurs impliquant la texture, la capacité d’échange cationique, la procédure d’irrigation et la rotation des cultures.
Mots-clés :
- eaux usées,
- irrigation,
- calcisol,
- fluvisol,
- sodium échangeable,
- taux d’absorption du sodium
Appendices
Bibliographie
- Bibliographical references
- AFNOR (1997). Qualité de l’eau, méthodes d’analyses 3. AFNOR (Editor), tome 4, 296 p.
- AYERS R.S. and D.S. WESTCOT (1985). Water quality for agriculture. Irrigation and Drainage Paper, 29, FAO, Rome, 174 p.
- BAHRI A. (2002). Water reuse in Tunisia: stakes and prospects; In: Actes de l’Atelier du PCSI, 28-29 mai, Montpellier, France, 11 p.
- BAUDER J.W., K.R. HERSHBERGER and L.S. BROWNING (2008). Soil solution and exchange complex response to repeated wetting–drying with modestly saline–sodic water. Irrig. Sci., 26,121-130.
- BOURI S., H. ABIDA and H. KHANFIR (2008). Impacts of wastewater irrigation in arid and semi-arid regions: case of Sidi Abid region, Tunisia. Environ. Geol., 53, 1421-1432.
- ChOUDHARY O.P., B.S. GHUMAN, A.S. JOSAN and M.S. BAJWA (2006). Effect of alternating irrigation with sodic and non-sodic waters on soil properties and sunflower yield. Agric. Water Manage., 85, 151-156.
- COPPOLA A., A. SANTINI, P. BOTTI, S. VACCA, V. COMEGNA and G. SEVERINO (2004). Methodological approach for evaluating the response of soil hydrological behavior to irrigation with treated municipal wastewater. J. Hydrol., 292, 114-134.
- FAO (1998). World reference base for soil resources, by ISSS–ISRIC–FAO. World Soil Resources Report No. 84. Rome, 88 p.
- GLOAGUEN T.V., M. CRISTINA FORTI, Y. LUCAS, C.R. MONTES, A.B. GONCALVES ROBERTA, U. HERPIN and A.J MELFI (2007). Soil solution chemistry of a Brazilian oxisol irrigated with treated sewage effluent. Agric. Water Manage., 88, 119-131.
- GUPTA R.K. and I.P. ABROL (1990). Salt-affected soils: their reclamation and management for crop production. Adv. Soil Sci., 11, 223-288.
- HARUVY N. (1997). Agricultural reuse of wastewater: nation-wide cost-benefit analysis. Agri. Ecosyst. Environ., 66, 113-119.
- HERPIN U., T.V. GLOAGUEN, A.F. DA FONSECA, C.R. MONTES, F.C. MENDONÇA, R.P. PIVELI, G. BREULMANN, M.C. FORTI and A.J. ET MELFI (2007). Chemical effects on the soil-plant system in a secondary treated wastewater irrigated coffee plantation - a pilot field study in Brazil. Agri. Water Manage., 89, 105-115.
- HULUGALLE N.R., T. B. WEAVER, H. GHADIRI and A. HICKS (2006). Changes in soil properties of an eastern Australian vertisol irrigated with treated sewage effluent following gypsum application. Land Degrad. Develop.,17, 527-540.
- JALALI M., H. MERIKHPOUR, M.J. KALEDHONKAR and S.E.A.T.M. VAN DER ZEE (2008). Effects of wastewater irrigation on soil sodicity and nutrient leaching in calcareous soils. Agric. Water Manage., 95, 143-153.
- JACKSON M.L. (1958). Soil chemical analysis. Englewood Cliffs, N.J., Prentice-Hall, 498 p.
- KIZILOGLU F.M., M. TURAN, U. SAHIN, I. ANGIN, O. ANAPALI and M. OKUROGLU (2007). Effects of wastewater irrigation on soil and cabbage-plant (Brassica olerecea var. capitate cv. yalova-1) chemical properties. J. Plant Nutri. Soil Sci., 170, 166-172.
- LEVINE, A. and T. ASANO (2004). Recovering sustainable water from wastewater. Environ. Sci. Technol., 38, 201A-208A.
- LEVY G.J., A.I. MAMEDOV and D. GOLDSTEIN (2003). Sodicity and water quality effects on slaking of aggregates from semi arid soils. Soil Sci., 168, 552-562.
- METSON A.J. (1956). Methods of chemical analysis for soil survey samples. Soil bureau, Bull. N° 12, Wellington, DSIR, New Zealand, 207 p.
- MINHAS P.S., S.K. DUBEY and D.R. SHARMA (2007). Comparative effects of blending, intra/inter-seasonal cyclic uses of alkali and good quality waters on soil properties and yields of paddy and wheat. Agric. Water Manage., 87, 83-90.
- MOHAMMAD RUSAN M.J., S. HINNAWI and L. ROUSAN (2007). Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination, 215, 143-152.
- NAKAYAMA F.S. and D.A. BUCKS (1986). Trickle irrigation for crop production: Design, operation and management. Elsevier, New York, NY, 383 p.
- OLIVIER R. (1984). Étude comparative de deux méthodes d’extraction et de dosage des bases et de la capacité d’échange sur les sols du Sénégal. Agron. Trop., 39, 14-21.
- ORSINI L. and J.C. REMY (1976). Utilisation du chlorure de cobaltihexamine pour la détermination simultanée de la capacité d’échange et des bases échangeables des sols. Sci. Sol, Bull. de l’AFES, 4, 269-279.
- PESCOD M.B. (1992). Wastewater treatment and use in agriculture. Bull. FAO, 47, Rome, Italy, 125 p.
- SAIDI, D., Y. LE BISSONNAIS, O. DUVAL, Y., DAOUD et A. HALITIM (2004). Effet du sodium échangeable et de la concentration saline sur les propriétés physiques des sols de la plaine du Cheliff (Algérie). Étude Gestion Sols, 11, 81-92.
- SUAREZ D.L., J.D. WOOD and S.M. LESCH (2006). Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agric. Water Manage., 86, 150-164.
- SUMNER M.E. (1995). Sodic soils: new perspectives. In: Australian Sodic Soils: Distribution, Properties and Management. Naidu, R., Sumner, M.E. and Rengasamy, P. (Editors.), CSIRO, Melbourne, 351 p.
- TARCHITZKY, J., Y. GOLOBATI, R. KEREN and Y. CHEN (1999). Wastewater effects on montmorillonite suspensions and hydraulic properties of sandy soils. Soil Sci. Soc. Am. J., 63, 554-560.
- TEDESCHI A. and R. DELL’ AQUILA (2005). Effects of irrigation with saline waters, at different concentrations, on soil physical and chemical characteristics. Agric. Water Manage., 77, 308-322.
- U.S. SALINITY LABORATORY STAFF (1954). Diagnosis and improvement of saline and alkali soils, USDA Handbook 60. U.S. Government Printing Office, Washington, DC, USA, 160 p.
- VAN HOORN J., W. KATERJI, N. HAMDY and M. MASTRORILLI (2001). Effect of salinity on yield and nitrogen uptake of four grain legumes and on biological nitrogen contribution from the soil. Agric. Water Manage., 51, 87-98.
- WALKLEY A. and C.A. BLACK (1934). An examination of the Degtjareff method for determining soil organic matter and a proposal modification of the chromic acid titration method. Soil Sci., 37, 29-38.
- YADAV R.K., B. GOYAL, R.K. SHARMA, S.K. DUBEY and P.S. MINHAS (2002). Post-irrigation impact of domestic sewage effluent on composition of soils, crops and groundwater - A case study. Environ. Internat., 28, 481-486.