Abstracts
Résumé
Une méthode d’éléments finis mixte hybride est appliquée pour l’approximation de l’écoulement associé au transport en milieu poreux non saturé. Le développement de ce modèle s’effectue dans le cadre du projet européen ARWET, lequel a pour objectif l’étude de nouvelles potentialités de dissipation des pesticides dans les zones humides. La formulation du modèle bidimensionnel est fondée sur les propriétés de l’espace de Raviart-Thomas. L’écueil numérique que posent les problèmes à convection dominante est surmonté par l’introduction d’un limiteur de flux alors qu’un limiteur de pente est généralement utilisé dans la littérature. Le limiteur suggéré est inconditionnellement stable et permet de conserver la précision des résultats à nombre de Peclet élevé.
Mots clés:
- zone humide artificielle,
- éléments finis hybrides,
- modelisation,
- pesticides,
- transport de soluté,
- limiteur de flux
Abstract
A mixed hybrid finite element method was applied to obtain a numerical approximation of the flow and associated transport equations in unsaturated media. The model was developed under the framework of the European Life Environment project ARTWET, which aims to study new treatment potentials for the mitigation of non-point source pesticide pollution in a constructed wetland. The model formulation used is based on Raviart-Thomas space properties, considering a two-dimensional domain divided into triangular elements. In order to control for the difficulties when convection is the dominant process, a flux limiting tool was introduced, although a slope limiter is generally used in the literature. The suggested flux limiting tool makes it possible to preserve precision and unconditional stability at low and very high Peclet numbers.
Keywords:
- Constructed wetland,
- mixed hybrid finite element,
- modelling,
- pesticides,
- solute transport,
- flux limiter
Appendices
Références bibliographiques
- Abriola L.M. et G.F. Pinder (1985). A multiphase approach to the modeling of porous media contamination by organic compounds, 1. Equation development. Water Resour. Res., 21, 11–18.
- Ackerer Ph., A. Younes, R. Mose (1999). Modeling variable density flow and solute transport in porous medium: 1. Numerical model and verification. Transport Porous Media., 35, 345-373.
- Adenekan A.E., T.W. Patzek et K. Pruess (1993). Modeling of multiphase transport of multicomponent organic contaminants and heat in the subsurface: Numerical model formulation. Water Resour. Res., 29, 3727–3740.
- Alexander M. et M. Scow (1989). Kinetics of biodegradation in soil. pp. 243-269. Dans : Reactions and movement of organic chemicals in soils, Sawhney B.L. et Brown K, (Éditeurs), SSSA Spec. Publ. 22. SSSA Madison, WI, USA.
- Belfort B. (2006). Modélisation des écoulements en milieux poreux non saturés par la méthode des éléments finis mixtes hybrides. Thèse de Doct., Univ. Louis Pasteur. Strasbourg, France, 220 p.
- Camase (1996). Register of agro-ecosystems models. Dans : Camase: Concerted Action for the Development and Testing of Quantitative Methods for Research on Agricultural System and the Environment. Plentinger M.C. et Penning de Vries F.W.T. (Éditeurs). DLO Research Institute for Agrobiology and Soil Fertility, Wageningen, the Netherlands, 420 p.
- Carrayrou J., R. Mosé et P. Behra (2004). Operator-splitting procedures for reactive transport and comparison of mass balance errors. J. Contam. Hydrol., 68, 239-268.
- Chavent G et JE. Roberts (1991). A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems. Adv. Water Resour., 14, 329-348.
- Corapcioglu M.Y. et A.L. Baehr (1987). A compositional multiphase model for groundwater contamination by petroleum products, 1. Theoretical considerations. Water Resour. Res., 23, 191–200.
- Dordio A.V., J. Teimão, I. Ramalho, A.J. Palace Carvalho et A.J. Estêvão Candeias (2007). Selection of a support matrix for the removal of some phenoxyacetic compounds in constructed wetlands systems. Sci. Total Environ., 380, 237-246.
- El-Kadi A.I. et G. Ling (1993). The Courant and Peclet number criteria for the numerical solution of the Richards equation. Water Resour. Res., 29, 3485-3494.
- Forsyth P.A. (1994). Three-dimensional modeling of steam flush for DNAPL site remediation. Int. J. Num. Methods Fluids, 19, 1055–1081.
- Forsyth P.A., A.J.A. Unger et E.A. Sudicky (1998). Nonlinear iteration methods for nonequilibrium multiphase subsurface flow. Adv. Water Resour., 21, 433499.
- Garratt J.A., E. Capri, M. Trevisan, G. Errera et R.M. Wilkins (2003). Parameterisation, evaluation and comparison of pesticide leaching models to data from a Bologna field site, Italy. Pest. Manag. Sci., 59, 3-20.
- Gottesbüren B., W. Pestemer et S. Beulke (1994). Characteristics and effects of the time course of the sorption behaviour of herbicides in soil (in German). Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, Sonderheft., XIV, 661-670.
- Holvoet K., A. van Griensven, P. Seuntjens, P.A. Vanrolleghem (2004). Hydrodynamic modelling with soil and water assessment tool (SWAT) for predicting dynamic behaviour of pesticides. 211-218. Dans : Water and Environment Management Series. Young Researches 2004, Lens P. et R. Stuetz, (Éditeurs). ISBN: 1843395053.
- Hoteit H., Ph. Ackerer, R. Mosé, J. Erhel et B. Philippe (2004). New two-dimensional slope limiters for discontinuous Garlerkin methods on arbitrary meshes. Int. J. Numer. Meth. Eng., 61, 2566-2593.
- Hoteit H., J. Erhel, R. Mosé, B. Philippe et Ph. Ackerer (2002). Numerical reliability for mixed methods applied to flow problems in porous media. Comput. Geosci., 6, 161-194.
- Ippisch O., H.J. Vogel et P. Bastian (2006). Validity limits for the van Genuchten-Mualem model and implications for parameter estimation and numerical simulation. Adv. Water Resour., 29, 1780-1789.
- Kirkland M.R., R.G. Hills et P.J. Wierenga (1992). Algorithms for solving Richards’ equation for variably saturated soils. Water Resour. Res., 28, 2049-2058.
- Oldenburg C.M. et K. Pruess (2000). Simulation of propagating fronts in geothermal reservoirs with the implicit Leonard total variation diminishing scheme. Geothermics, 29, 1–25.
- Oltean C. et M.A. Buès (2001). Coupled groundwater flow and transport in porous media. A conservative or non-conservative form? Transp. Porous Media, 44, 219-246.
- Leij F.J. et J.H. Dane (1990). Analytical solutions of the one-dimensional advection equation and two- or three-dimensional dispersion equation. Water Resour. Res., 26, 1475–1482.
- Liu J., M. Delshad, G.A. Pope et K. Sepehrnoori (2004). Application of higher-order flux-limited methods in compositional simulation. Transp. Porous Media., 16 1–29.
- Mazzia A., L. Bergamaschi, C.N. Dawson et M. Putti (2002). Godunov mixed methods on triangular grids for advection-dispersion equations. Comput. Geosci., 6, 123-139.
- Mosé R., P. Siegel, P. Ackerer et G. Chavent (1994). Application of the mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity? Water Resour. Res., 30, 3001-3012.
- Nayagum D. (2001). Simulation numérique de la pollution du sous-sol par les produits pétroliers et dérives : Application au cas d’un écoulement diphasique monodimensionnel. Thèse de Doct., Univ. Louis Pasteur, Strasbourg, France, 151 p.
- Raviart P.A. et J.M. Thomas (1977). A mixed finite method for the second order elliptic problems., Dans : Mathematical Aspects of the Finite Element Methods. Galligani I. et Magenes, E., (Éditeurs). Lecture Notes in Math. 606, Springer, New York, pp. 292-315.
- REM (2007). Register of Ecological Models. A meta-database for existing mathematical models in ecology. University of Kassel and National Research Center for Environment and Health (GSF), 2006. http://www.wiz.uni-kassel.de/ecobas.html, consulté le 26 avril 2007.
- Schultz R., M.T. Moore, E.R. Bennett, C.D. Milam, J.L. Bouldin, J.L. Farris, Jr S. Smith et C.M. Cooper (2003). Acute toxicity of methyl-parathion in wetland mesocosms: assessing the influence of aquatic plants using laboratory testing with Hyalella azteca. Arch. Environ. Contam. Toxicol., 45, 331-336.
- SIEGEL P. (1995). Transfert de masse en milieux poreux fortement hétérogènes : modélisation et estimation de paramètres par éléments finis mixtes hybrides et discontinus. Thèse de Doctorat, Univ. Louis Pasteur, Strasbourg, France.
- Siegel P., R. Mosé, Ph. Ackerer et J. Jaffre (1997). Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements. Int. J. Numer. Meth. Fluids, 24, 595-613.
- Siimes K. et J. Kämäri (2003). A review of available pesticide leaching models: Selection of models for simulation of herbicide fate in Finnish sugar beet cultivation. Boreal. Env. Res., 8, 31-51. ISSN 1239-6095.
- Šimunek J., M.Th. van Genuchten et M. Šejna (2005). The HYDRUS-1D software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, Version 3.0, HYDRUS Software Series 1, Department of Environmental Sciences, University of California Riverside, Riverside, California, USA, 240 p.
- Unger A.J.A., P.A. Forsyth et E.A. Sudicky (1996). Variable spatial and temporal weighting schemes for use in multi-phase compositional problems. Adv. Water Resour., 19, 1–27.
- van der Zee S.e.a.t.m. et J.J.T.I. Boesten (1991). Effects of soil heterogeneity on pesticide leaching to groundwater. Water Resour. Res., 27, 3051-3063.
- Vink J.P.M., B. Gottesburen, B. Diekkruger et van der Zee S.e.a.t.m. (1997). Simulation and model comparison of unsaturated movement of pesticides from a large clay lysimeter. Ecol. Model., 105, 113-127.
- Younes A., R. Mose, P. Ackerer, G. Chavent (1999). A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J. Comput. Phys., 149, 148-167.