Abstracts
Résumé
Les fibres du végétal marin Posidonia oceanica (L.) ont été utilisées en tant que nouvel adsorbant biologique pour l’élimination du chrome hexavalent des solutions aqueuses artificiellement contaminées. Les expériences ont été effectuées en lots aussi bien pour les cinétiques que pour les isothermes d’adsorption. Les variables expérimentales étudiées sont le pH, la température, la quantité de biomasse et la concentration initiale de Cr(VI). Le maximum de biosorption a été observé pour un pH 2. La capacité de biosorption semble être optimisée par une augmentation de la température, de la quantité de biosorbant et de la concentration initiale. Les isothermes d’adsorption sont en accord avec les modèles de Redlich-Peterson et Langmuir. De plus, l’analyse thermodynamique a révélé que le présent processus d’adsorption est un phénomène favorable, endothermique et spontané.
Mots clés:
- Biomasse marine,
- fibres de posidonie,
- isothermes,
- thermodynamique
Summary
The marine biomass Posidonia oceanica (L.) fibres were used as a novel low cost biological adsorbent for the removal of hexavalent chromium from artificially contaminated aqueous solutions. Experiments were carried out for sorption kinetics and isotherms in a batch system. The operating variables studied were pH, temperature, biomass quantity and initial chrome concentration. The maximum adsorption removal was observed at pH 2. The biosorption capacity of P. oceanica fibres for Cr(VI) was enhanced by increasing the temperature, the biosorbent amount and initial chromium concentration. The isotherm adsorption data were satisfactorily found to be described by both Redlich-Peterson and Langmuir. Besides, the thermodynamic studies revealed that the present adsorption process is a favourable, endothermic and spontaneous phenomenon.
Keywords:
- Marine biomass,
- posidonia fibres,
- isotherms,
- thermodynamics
Appendices
Références bibliographiques
- ARICA, M.Y., G. BAYRAMOGLU (2005). Cr (VI) biosorption from aqueous solutions using free and immobilized biomass of Lentinussajor-caju: preparation and kinetic characterization. Colloids and Surfaces A: Physicochem. Eng. Aspects, 253, 203-211.
- BABEL, S., T.A. KURNIAWAN (2004). Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, 54, 951-967.
- BARNHART, J. (1997). Occurrences, uses, and properties of chromium. Regul. Toxicol. Pharmacol., 26, 3-7.
- BAYRAMOGLU, G., G. ELIK, E. YALCIN, M. YILMAZ, M.Y. ARICA, 2005. Modification of surface properties of Lentinussajor-caju mycelia by physical and chemical methods: evaluation of their Cr (VI) removal efficiencies from aqueous medium. J. Hazardous Mater., B119, 219-229.
- BRASIL, J.L., R.R. EV, C.D. MILCHAREK, L.C.MARTINS, F.A. PAVAN, A.A. DOS SANTOS, L.P. DIAS, J. DUPONT, C.P. ZAPATA, NORENA, E.C. LIMA (2006). Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes. J. Hazardous Mater., B133, 143-153.
- DAKIKY, M., M. KHAMIS, A. MANASSRA, M. MEREB (2002). Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv. Environ. Res., 6, 533-540.
- DANESHVAR, N., D. SALARI, S. ABER (2002). Chromium adsorption and Cr(VI) reduction to trivalent chromium in aqueous solutions by soya cake. J. Hazardous Mater., B94, 49-61.
- DÖNMEZ, G., Z. AKSU (2002). Removal of chromium (VI) from saline wastewaters by Dunaliella species. Process Biochem., 38, 751-762
- FREUNDLICH, H., 1906. Over the adsorption in solution. J. Phys. Chem., 57, 385-470.
- GARDEA, J.L., K.J. TIEMANN, V. ARMENDARIZ, L. BESS, R.R. CHIANELLI, J. RIOS, J.G. PARSONS, G. GAMEZ (2000). Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural by products of Avena monida (oat) biomass, J. Hazardous. Mater., 80, 175-181.
- GREENBERG, A.E., R.R. TRUSSELL, L.S. CLESCERY, (1985). Standard methods for the examination of water and wastewater. (APHA), 16e edition; AWWA-WPCF, Washington, DC.
- GUPTA, V.K., A.K. SHRIVASTAVA, J. NEERAJ (2001). Biosorption of chromium (VI) from aqueous solutions by green algae Spirogyra species. Water Res., 35, 4079-4085.
- HAMADI, N.K., X.D. CHEN, M.M. FARID, M.G.Q. LU, (2001). Adsorption kinetics for the removal of chromium (VI) from aqueous solution by adsorbents derived from used tyres and sawdust. Chem. Eng. J., 84, 95-105.
- JOSSENS, L., J.M. PRAUSNIZ, W. FRITZ, U. SCHLUNDER, A.L. MYERS (1978). Thermodynamics of multisolute adsorption from dilute aqueous solutions. Chem. Eng. Sci., 33, 1097-1106.
- KHAN, S.A., R. REHMAN, M.A. KHAN (1995). Adsorption of chromium (III), chromium (VI), and silver (I) on bentonite. Waste Manage., 15, 271-282.
- KRUGER, L., T. ANDERSON, J. COATS (1997). Phytoremediation of Soil and Water Contaminants. ACS Symposium Series. Washington DC, American Chem.Soc., 664, 274-282.
- LAFABRIE, C., C. PERGENT-MARTINI, G. PERGENT (2007). Metal contamination of Posidonia oceanica meadows along the Corsican coastline (Mediterranean). Environ. Pollut., , Sous Presse.
- LANGMUIR, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Amer. Chem. Soc., 40, 1361-1403.
- LOTFI, M. et N. ADHOUM (2002). Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Sep. Purif. Technol., 137-146.
- MELO, J.S. et S.F. D’SOUZA (2004). Removal of chromium by mucilaginous seeds of Ocimum basilicum. Bioresour. Technol., 92, 151-155.
- NCIBI, M.C., B. MAHJOUB et M. SEFFEN (2006a). Biosorption of phenol onto Posidonia oceanica (L.) seagrass in batch system: Equilibrium and kinetic modelling. Cnd. J. Chem. Eng., 84, 495-500.
- NCIBI, M.C., B. MAHJOUB et M. SEFFEN (2006b) Studies on the biosorption of textile dyes from aqueous solutions using Posidonia oceanica (L.) leaf sheaths fibres. Adsorpt. Sci. Technol., 24 (6), 461-473.
- NCIBI, M.C., B. MAHJOUB et M. SEFFEN (2007). Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres. J. Hazard. Mater., B139, 280-285.
- OZER, A., H.S. ALTUNDOGAN, M. ERDEM et F. TUMEN (1997). A study on the Cr(VI) removal from aqueous solutions by steel wool. Environ. Pollut., 97, 107-112.
- PADILLA, A.P. et E.L. TAVANI (1999). Treatment of an industrial effluent by reverse osmosis. Desalination, 129, 219-226.
- PARK, D., Y.S. YUN et J.M. PARK (2005). Use of dead fungal biomass for the detoxification of hexavalent chromium: screening and kinetics. Process Biochem., 40, 2559-2565.
- RENGARAJ, S., C.K. JOO, Y. KIM et J. YI (2003). Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. J. Hazard. Mater., 102, 257-275.
- SAWALHA, M.F., J.L. GARDEA-TORRESDEY, J.G. PARSONS, G. SAUPE et J.R. PERALTA-VIDEA (2005). Determination of adsorption and speciation of chromium species by saltbush (Atriplex canescens) biomass using a combination of XAS and ICP–OES. Microchem. J., 81, 122-132.
- SHANKER, A., C. CERVANTES, H. LOZA-TAVERA et S. AVUDAINAYAGAM (2005). Chromium toxicity in plants. Environ. Int., 31, 739-753.
- SMITH, J.M. et H.C. VAN NESS (1987). Introduction to chemical engineering thermodynamics, 4e edition, McgGraw-Hill, Singapore.
- TEWARI, N., P. VASUDEVAN et B. GUHA (2005). Study on biosorption of Cr(VI) by Mucor hiemalis. Biochem. Eng. J., 23, 185-192.
- TUNALI, S., I. KIRAN et T. AKAR (2005). Chromium (VI) biosorption characteristics of Neurospora crassa fungal biomass. Minerals Eng., 18, 681-689.
- UCUN, H., Y.K. BAYHAN, Y. KAYA, A. CAKICI et O.F. ALGUR (2002). Biosorption of chromium(VI) from aqueous solution by cone biomass of Pinus sylvestris. Bioresour. Technol., 85, 155-158.