Abstracts
Abstract
This paper documents the aqueous transport of acidic drainage in the Little and Main Sackville Rivers in Nova Scotia, and contributes to a better general understanding of the movement and duration of impact in such an event. Acidic drainage has been often noted as a major environmental hazard in mainland Nova Scotia. In addition to the details of the distribution and dispersal of metal concentrations in the Sackville Rivers ecosystem, some of the effects upon the aquatic organisms in the area are presented.
Both an automated and hand-held devices were used to obtain physical water quality both prior to and after the event. The environmental impacts of the contaminant are discussed in terms of their immediate effects. The immediate effects in the mixing zone, where toxicity occurred, were at the entrance of the acid-bearing outflow, where there was a presence of mixing with the higher pH waters in the main channel. More than 4000 dead fish were counted (including approximately 300 American eels (Anguilla rostrata), 1000 one-year-old salmon (Salmo salar), 150 two-year-old salmon, 24 small-mouth bass (Micropterus dolmieui) and 24 suckers (Catostomus commersonii), in addition to minnows (specific species unidentified), small gaspereau (Alosa pseudoharengus), brook trout (Salvelinus fontinalis), freshwater mussels (specific species unidentified), and a snapping turtle (Chelydra serpentina). It is most likely that the fish kill resulted from rapid suffocation due to metal flocculants clogging the gills. It was in this zone where dissolved metals precipitated (Al, Fe, Cu).
Key Words:
- fish kill,
- contamination,
- impacts,
- acid drainage,
- metals
Résumé
Le drainage acide a souvent été identifié comme un danger environnemental majeur. Cet article décrit un épisode d’acidification qui s’est produite dans la rivière Sackville, Nouvelle Ecosse, Canada. Il contribue à offrir une meilleure compréhension de la durée d’impact d’un tel événement. Outre les détails concernant la distribution et le dispersement des concentrations métalliques dans la rivière Sackville, cet article souligne aussi quelques effets subis par les organismes aquatiques de la rivière.
Pour suivre la qualité de l’eau avant, pendant et après l’épisode, des échantillons d’eau ont été prélevés à l’aide d’un appareil mécanique automatisé et analysés pour diverses variables (pH ; conductivité ; ions majeurs ; métaux traces); certaines mesures (pH ; conductivité, turbidité ; oxygène dissous ; température) ont également été effectuées manuellement. Les impacts environnementaux les plus évidents se sont manifestés dans la zone de mélange, où les eaux acides ont rencontré les eaux de la rivière Sackville principale, qui avaient un pH nettement plus haut. Plus de 4000 poissons sont morts, y compris environ 300 anguilles américaines (Anguilla rostrata), 1000 saumons âgés d’un an (Salmo salar), 150 saumons de deux ans, des achigans à petite bouche (Micropterus dolmieui) et 24 meuniers noirs (Catostomus commersonii), en plus de menés (espèces non identifiées), de petits gaspareaux (Alosa pseudoharengus), de truites mouchetées (Salvelinus fontinalis), des moules d’eau douce (espèces non identifiées) et une tortue mordante (Chelydra serpentina). Il est fort probable que les poissons sont morts d’asphyxiassions rapide due à la présence de métaux floculés qui leur aurait bouché les branchies. C’était dans cette zone que les concentrations de métaux dissous se précipitaient (Al, Fer, Cu).
Mots clefs:
- extermination des poissons,
- contamination,
- impacts,
- drainage acide,
- métaux
Appendices
References
- BERRYMAN, D. et L. JALBERT (2004). La Rivière Bourlamaque : mortalité de poissons du 8 août 2003 et qualité de l’eau, Québec, ministère de l’Environnement, Direction du suivi de l’état de l’environnement et Direction régionale de l’Abitit-Témiscamingue, envirodoq ENV/2004.0109, collection QE/140, 37 p. et 4 ann.
- BROWN, D.J.A. and K. SADLER (1989). Fish survival in acid waters. In: Acid Toxicity and Aquatic Animals. Society for Experimental Biology Seminar Series: 34, (Morris, R. et al., Eds.), Cambridge University Press, pp. 31-44.
- CALTA, M. (2002). Does brown trout (Salmo trutta L.) larval development retardation caused by short-term exposure to low pH and elevated aluminum concentration affect a second episode of toxicity? J. Applied Ichthyol., 18, 210‑215.
- CANADIAN COUNCIL OF MINISTERS OF THE ENVIRONMENT (CCME) 2002. Canadian Environmental Quality Guidelines. Canadian Council of Ministers of the Environment, Winnipeg.
- DUFFUS, J. (2002). “Heavy metals” – A meaningless term? Pure and Appl. Chem., 74, 793-807.
- EXLEY, C., A. WICKS, R. HUBERT and J.D. BIRCHALL (1996). Kinetic constraints in acute aluminum toxicitiy in the rainbow trout (Onchorhynchus mykiss). J.Theor. Biol., 179, 25-31
- FEETHAM, M., R.J. RYAN, G. PE-PIPER and A.M.O’BEIRNE-RYAN (1997). Lithogeochemical characterization of the Beaverbank unit of the Halifax Formation, Meguma Group, and acid drainage implications. Atl. Geol., 33, 133-141.
- FOX, D., C. ROBINSON and M. ZENTILLI (1997). Pyrrhotite and associated sulphides and their relationship to acid rock drainage in the Halifax Formation, Meguma Group, Nova Scotia. Atl. Geol., 33, 87-103.
- FROMM, P. (1980). A review of some physiological and toxicological responses of freshwater fish to acid stress. Environ. Biol. Fishes, 5, 79-93.
- GRIMALT, J., M. FERRE and E. MACPHERSON (1999). The mine tailing accident in Aznalcollar. Sci. Total Environ., 242, 3-11.
- HEBDA, A. Bedford-Sackville Weekly News, Wednesday, July 24, 2002. “Finding good in the bad; Sackville Rivers Association sees educational opportunity in fish kill.”
- HEM, J. D. (1970). Study and Interpretation of the Chemical Characteristics of Natural Waters, 2nd. edition. United States Geological Survey Water Supply Paper. 2254, 363 p.
- HENRY, T., E. IRWIN, J. GRIZZLE, M. WILDHABER and W. BRUMBAUGH (1999). Acute toxicity of an acid mine drainage mixing zone to juvenile Bluegill and Largemouth Bass. Trans. Americ. Fish. Soc., 128, 919-928.
- HUNT, M., A. MAYIO, M. BROSSMAN and A. MARKOWITZ (1996). The Volunteer Monitor’s Guide to Quality Assurance Project Plans. U.S. Environmental Protection Agency and Office of Wetlands, Oceans and Watersheds 4503F, Publication No. EPA, 84-B-96-003, 67 p.
- JACQUES WHITFORD ENVIRONMENT LIMITED February 2004. “Little Sackville River: Fish and Fish Habitat Monitoring Results” Final Report, JWEL Project #NSD17122, 22 p.
- LEIVESTAD, H. and I.P. MUNIZ (1976). Fish kill at low pH in a Norwegian river. Nature, 259, 391-392.
- MCKNIGHT, D.M. and G.L. FEDER (1984). The ecological effect of acid conditions and precipitation of hydrous metal oxides in a Rocky Mountain stream. Hydrobiol., 119, 129‑138.
- MILLER, J. (1997). The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. J. Geoch. Explor., 58, 101-118.
- NEVILLE, C.M. (1985). Physiological response of juvenile rainbow trout, Salmo gairdneri, to acid and aluminum – prediction of field responses from laboratory data. Can. J. Fish. Aquat. Sci., 42, 2004-2019.
- NOLAN DAVIES ASSOCIATES. 1987. Hydrotechnical study of the Little Sackville Rover Floodplain. Canada-Nova Scotia Flood Damage Reduction Program, Halifax, Nova Scotia.
- OFFICE OF SURFACE MINING (1995). Appalachian Clean Streams Initiative. Inform. Bull., 1995, 618-289.
- POLÉO, A. (1995). Aluminum polymerization – a mechanism of acute toxicity of aqueous aluminum to fish. Aquat. Toxicol., 31, 347-356.
- PRAT, N., J. TOJA, C. SOLÀ, M.D. BURGOS, M. PLANS and M. RIERADEVALL (1999). Effect of dumping and cleaning activities on the aquatic ecosystems of the Guadiamar River following a toxic flood. Sci. Total Environ., 242, 231-248.
- ROSSELAND, B.O., I.A. BLAKAR, A. BULGER, F. KROGLUND, A. KVELLSTAD, E. LYDERSEN, D.H. OUGHTON, B. SALBU, M. STAURNES, and R. VOGT (1992). The mixing zone between limed and acidic river waters: complex aluminum chemistry and extreme toxicity for salmonids. Environ. Pollut., 78, 3-8.
- SHARPE, W.E., D.R. DEWALLE, R.T. LEIBFRIED, R.S. DINICOLA, W.G. KIMMEL, and L.S. SHERWIN (1984). Causes of acidification of four streams on Laurel Hill in Southwestern Pennsylvania. J. Environ. Qual., 13, 619-631.
- SOLÀ, C., M. BURGOS, A. PLAZUELO, J. TOJA, M. PLANS and N. PRAT 2004. Heavy metal bioaccumulation and macroinvertebrate community changes in a Mediterranean stream affected by acid mine drainage and accidental spill (Guadiamar River, SW Spain). Sci. Total Environ, 333, 109-126.
- SOUCEK, D.J., D.S. CHERRY and G.C. TRENT (2000a). Relative acute toxicity of acid mine drainage water column and sediments to Daphnia magna in the Puckett’s Creek Watershed, Virginia, USA. Arch. Environ. Contam. Toxicol, 38, 305-310.
- SOUCEK, D.J., G.C. TRENT, D.S. CHERRY, R.J. CURRIE and H.A. LATIMER (2000b). Laboratory to field validation in an integrative assessment of an acid mine drainage-impacted watershed. Environ. Toxicol. Chem., 19, 1036-1043.
- SOUCEK, D.J., D. CHERRY, and C. ZIPPER (2001). Aluminum-dominated acute toxicity to the cladoceran Ceriodaphnia dubia in neutral waters downstream of an acid mine drainage discharge. Can. J. Fish. Aquat. Sci., 58, 2396-2404.
- STANDARDS AUSTRALIA (1998). AS/NZS 5667.6. Water quality-sampling-guiding on sampling of rivers and streams. Standards Australia, New South Wales, Australia.
- THEOBALD, P.K., H.W. LAKIN, and D.B. HAWKINS (1963). The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado. Geochim. Cosmochim. Acta, 27, 121-132.
- UNITED STATES ENVIRONMENTAL PROTECTION AGENCY (1995). Methods for the Determination of Metals in Environmental Samples. EPA 200.7, Cincinnati, OH, 332 p.
- UNITED STATES ENVIRONMENTAL PROTECTION AGENCY (1995). Method 1669: Sampling ambient water for trace metals at EPA water quality criteria levels. EPA821-R-95-034, US EPA, Cincinnati, OH.
- WONG, H.K.T., A. GAUTHIER and J.O. NRIAGU (1999). Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada. Sci. Total Environ., 228, 35-47.
- ZENTILLI, M. and D. FOX (1997). Geology and mineralogy of the Meguma Group and their importance to environmental problems in Nova Scotia. Atl. Geol., 33, 81-85.