Abstracts
Résumé
La recherche de similarité hydrologique est très importante pour l’estimation des débits aux bassins non jaugés. L’indice radiatif d’aridité, proposé dans le modèle de bilan hydrique de Budyko, en combinaison avec le bilan radiatif, représente un paramètre de contrôle de l’ETR (évapotranspiration réelle). Cet indice permet de définir des régions climatiques ou géobotaniques dans lesquelles s’inscrivent les modèles pluie-débit ajustés d’après des historiques d’observations hydroclimatiques. Le présent travail utilise le modèle HBV muni d’une routine d’optimisation à l’aide de l’algorithme SCE‑UA. Il propose une méthodologie de calage dans laquelle on tient explicitement compte de l’ETR établie à grande échelle, à partir de l’indice d’aridité. Cette méthode de calage adopte comme fonction objective la combinaison de trois critères : minimisation de l’écart quadratique sur les débits, minimisation de l’écart sur le bilan hydrique, minimisation de l’écart à l’ETR régionale. On montre qu’ainsi, on améliore la performance du modèle en période de validation.
Mots clés:
- classification hydrologique,
- modèle HBV,
- modèle Budyko,
- SCE-UA,
- pluie- débit
Abstract
The research of hydrological similarity is very important for runoff estimation with respect to ungauged basins. The Budyko radiative dryness index may represent a control parameter for the estimation of actual evapotranspiration ETR, as output of rainfall-ruonff models. These models are generally adjusted according to hydro – climatic observations, whithout taking account for energy balance insights. Budyko index helps defining climatic or geobotanic regions, in which rainfall-runoff models may be enrolled. To develop these ideas, the HBV rainfall-runoff model is adopted, coupled to a SCE-UA optimisation tool. It is proposed to perform the model adjustment taking explicitly account for ETR regional estimation, as a constraint. The calibration method adopts an objective function combining three criteria: minimization of runoff root mean square error, minimization of water budget simulation error, minimization of the difference between mean annual simulated ETR and regional ETR. It is found that, by this way, model performances are enhanced, especially for the validation period.
Key words:
- hydrologic classification,
- HBV model,
- Budyko model,
- SCE-UA,
- rainfall-runoff
Appendices
Références bibliographiques
- Allen R.G., L.S. Pereira, D. Raes et M. Smith (1998). Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. FAO - Food and Agriculture Organization of the United Nations. Rome, Italie, 404 p.
- Andréassian V. (2005). Trois énigmes de modélisation hydrologique. Mémoire d’habilitation à diriger les recherches, Univ. Pierrre et Marie Curie, Paris, France, 154 p.
- Begström S. (1976). Development and application of a conceptual rainfall-runoff model for the scandinavian catchment, SMHI RH07, Norrköping.
- Budyko M.I. (1974). Climate and life. Academic Press., 508p.
- Burn D.H. (1990). Evaluation of regional flood frequency analysis with a region of influence approach. Water Resour. Res., 26, 2257-2265.
- Choudhyry B.J. (1999). Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. J. Hydrol., 216, 99‑110.
- Dakhlaoui H. et Z. Bargaoui (2007). A hybrid SCE-UA-KNN optimisation algorithm applied to the calibration of HBV model. Session hydroinformatics, computational intelligence and technological developments in water science applications. EGU General Assembly 2007, 15‑20 avril 2007.
- Donohue R.J., M.L. Roderick et T.R. McVicar (2007). On the importance of including vegetation dynamics in Budyko hydrological model. Hydrol. Earth Syst. Sci., 11, 983-995.
- Duan Q., S. Sorooshian et V.K. Gupta (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol., 158, 265‑284.
- Dunne S. M. (1999). Imposing constraints on parameter values of a conceptual hydrological model using base flow response. Hydrol. Earth Syst. Sci., 3, 271-284.
- Farmer D., M. Sivapalan et C. Jothintyangkoon (2003). Climate, soil, and vegetation controls upon the variability of water balance in temperate and semi-arid landscapes: Downward approach to water balance analysis. Water Resour. Res., 39, doi:10.1029/2001 WR000328.
- Hsuen-Chun Y. (1988). A composite method for estimating annual actual evapotranspiration. Hydrol. Sci. J., 33, 345‑356.
- Lamb R., K. Beven et S. Myrabo (1998). Use of spatially distributed water table observations to constrain uncertainties in a rainfall-runoff model, Adv. Water Resour., 22, 305-317.
- Lindström G., B. Johanson, M. Person, M. Gardelin et S. Bergström (1997). Development and test of the distributed HBV-96 hydrological model. J. Hydrol., 201, 272-288.
- Milly P.C.D et K.A. Dunne (2002). Macroscale water fluxes, 2. Water and energy supply control of their interannual variability. Water Resour. Res., 38, 10, 1206, doi:10.1029/2001 WR000760.
- Milly P.C.D. (1994). Climate, soil water storage and the average annual water balance. Wat. Resour. Res., 30, 2143‑2156.
- PiÑol J., M.J. LLedÓ et A. Escarré (1991). Hydrological balance for two mediterranan forested catchments (Prades, Northeast Spain). Hydrol. Sci. J., 36, 95-101.
- Ramade F. (1984). Éléments d’écologie Mc Graw-Hill., 403 p.
- Seibert J. (2000). Multi-criteria calibration of a conceptual runoff model using a generic algorithm. Hydrol. Earth Syst. Sci., 4, 215-224.
- Shiklomanov I.A. (1989). Climate and water resources. Hydrol. Sci. J., 34, 10, 495-529.
- Wagener T., M. Sivapalan, P. Troch et R. Woods (2007). Catchment classification and hydrologic similarity. Geography compass 1, 901-931, 10.1111/j. 1749‑8198.2007.00039.x
- Yang D., F. Sun, Z Liu., Z. Cong , Ni G. et Lei Z. (2007). Analyzing spatial and temporal variability of annual water-energy balance in non-humid regions of China using Budyko hypothesis. Watter Resour. Res., 43. W04426, doi:10.1029/2006 WR005224.