Abstracts
Résumé
L’estimation adéquate des événements hydrologiques extrêmes (événements de conception) est primordiale en raison des risques importants associés à une connaissance insuffisante de ces événements. Dans les sites où l’on dispose de peu ou même d’aucune information hydrologique, on a recours aux méthodologies d’estimation régionale pour l’estimation des extrêmes hydrologiques. De nombreuses méthodologies ont été développées durant les dernières années pour améliorer l’estimation régionale de la distribution des extrêmes hydrologiques. Cet article présente une synthèse exhaustive des derniers développements en matière d’analyse hydrologique régionale. Une discussion dégage les directions principales de ces développements récents, met en évidence les défis majeurs en matière d’analyse régionale pour les années futures et évoque des pistes prometteuses de travaux de recherche afin de répondre à ces nouveaux défis.
Mots clés:
- modèle régional,
- homogénéité,
- stationnarité,
- modèle multivarié,
- crue,
- étiage,
- analyse fréquentielle,
- modèle débit-durée-fréquence,
- corrélation canonique,
- régression,
- débit
Abstract
Adequate estimation of extreme hydrological variables is essential for the rational design and operation of a variety of hydraulic structures, due to the significant risk that is associated with these activities. Local frequency analysis is commonly used for the estimation of extreme hydrological events at sites where an adequate amount of data is available. However, data are usually only collected at a relatively limited number of sites. In practice, it frequently happens that little or no streamflow data is available at a site of interest (where a dam is to be constructed for example). In such cases, hydrologists can utilize a regional flood frequency procedure, relying on data available from other basins with a similar hydrologic regime.
Various methods have been developed over the last few years for the regional analysis of extreme hydrological events. These regionalization approaches aim to estimate different characteristics of the extreme hydrological phenomena of interest, make different assumptions and hypotheses concerning these hydrological phenomena, rely on various types of data, and often fall under completely different theories. The present paper aims to review and classify recent developments in regional frequency analysis of extreme hydrological variables.
The specific objectives of the paper are to: i) review the main recent developments in regional hydrologic modeling that have been proposed during the last few years; ii) classify these developments into different groups according to the theoretical background of the method, its specific objectives, and the characteristics of hydrological extreme phenomena it is intended to deal with; iii) propose a comprehensive discussion of these methods, and point out the hypotheses, limitations, data requirements, and potential of each one; iv) identify the new challenges facing engineers in terms of regional frequency analysis of hydrological extremes; and v) propose potential promising directions for future research work which aim to meet these new challenges.
Recent developments reviewed in the present paper include improvements in classical approaches for regional delineation and for information transfer, methods combining the delineation and estimation steps, seasonality-based methods, multivariate models for regional frequency analysis, the QdF approach, non stationary models, and approaches for the combination of local and regional data. The paper provides also a discussion of the various hydrological variables treated with regional estimation methodologies, comparative studies of these methodologies, and practical tools that were developed for regional frequency analysis. It is hoped that this document will contribute towards closing the gap between theory and practice, by narrowing the wide body of literature that is available, and by providing comprehensive propositions for regional frequency analysis approaches that meet the new challenges facing hydrologic engineers.
Key words:
- regional model,
- homogeneity,
- stationarity,
- multivariate model,
- flood,
- low flow,
- frequency analysis,
- flow-duration-frequency model,
- canonical correlations,
- regression,
- runoff
Appendices
Références
- BARBET, M., P. BRUNEAU, T.B.M.J. OUARDA, et H. GINGRAS (2006). REGIONS ‑ Software for regional flood estimation, HYDRO-2006 conference: Maximizing the benefits of hydropower, Porto-Carras, Grèce, 25 ‑ 28 septembre 2006.
- BURN, D.H. (1990a). An appraisal of the «region of influence» approach to flood frequency analysis. Hydrol. Sci. J., 35, 149-165.
- BURN, D.H. (1990b). Evaluation of regional flood frequency analysis with a region of influence approach. Water Resour. Res., 26, 2257-2265.
- BURN, D.H et R. FARID (2007). Pooled drought frequency analysis. Atelier de l’ACRH “Prediction in ungauged basins, low flows”, Québec, Qc., 12-13 avril 2007.
- CASTELLARIN, A., D.H. BURN, et A. BRATH (2001). Assessing the effectiveness of hydrological similarity measures for flood frequency analysis. J. Hydrol., 241, 270‑285.
- CASTELLARIN, A., R.M. VOGEL et N.C. MATALAS (2005). Probabilistic behavior of a regional envelope curve. Water Resour. Res., 41, W06018.
- CASTELLARIN, A. (2007). Probabilistic envelope curves for design flood estimation at ungauged sites. Water Resour. Res., 43,W04406.
- CHEBANA, F. et T.B.M.J. OUARDA (2007). Multivariate L‑moment homogeneity test. Water Resour. Res., 43, W08406.
- CHEBANA, F. et T.B.M.J. OUARDA (2008). Depth and homogeneity in regional frequency analysis. Rapport de recherche, INRS-ETE, 38p.
- CHOKMANI, K. et T.B.M.J. OUARDA (2004). Physiographical space based kriging for regional flood frequency estimation at ungauged sites. Water Resour. Res., 40, W12514.
- COLLINS, D., R. BRAS et G.E. TUCKER (2004). Modeling the effects of vegetation-erosion coupling on landscape evolution. JGR – Earth Surface, 109, F03004.
- CUNDERLIK, J. M. et D.H. BURN (2002a). The use of flood regime information in regional flood frequency analysis. Hydrol. Sci. J., 41, 77-92.
- CUNDERLIK, J.M. et D.H. BURN (2002b). Analysis of the linkage between rain et flood regime et its application to regional flood frequency estimation. J. Hydrol., 261, 115‑131.
- CUNDERLIK, J.M. et D.H. BURN, (2003). Non-stationary pooled flood frequency analysis. J. Hydrol., 276, 210-223.
- CUNDERLIK, J.M. et D.H. BURN (2006a). Site-focused test of regional homogeneity based on flood regime information. J. Hydrol., 318, 301-315.
- CUNDERLIK J.M. et D.H. BURN (2006b). Switching the pooling similarity distances: Mahalanobis for Euclidean. Water Resour. Res., 42, W03409. doi:10.1029/2005WR004245.
- CUNDERLIK, J.M. T.B.M.J. OUARDA et B. BOBÉE (2004a). On the objective identification of flood seasons. Water Resour. Res., 40, W01520.
- CUNDERLIK, J.M., T.B.M.J. OUARDA et B. BOBÉE (2004b). Determination of flood Seasonality from hydrologic records. Hydrol. Sci. J., 49, 511-526.
- CUNDERLIK, J.M. et T.B.M.J. OUARDA (2006). Regional flood-duration-frequency modeling in a changing environment. J. Hydrol., 318, 276-291.
- CUNDERLIK, J.M. et T.B.M.J. OUARDA (2007). Regional flood-rainfall duration-frequency modeling at small ungaged sites. J. Hydrol., 345, 61-69.
- DALRYMPLE, T. (1960). Flood frequency analysis. U.S. Geol. Surv. Water Supply Pap., 1543A.
- DAWSON, C.W., R.J. ABRAHART, A.Y. SHAMSELDIN, R.L. WILBY (2006). Flood estimation at ungauged sites using artificial neural networks. J. Hydrol., 319, 391-409.
- EBEL, B.A. et K. LOGUE (2006). Physics-based hydrologic-reponse simulation: Seeing through the fog of equifinality, Hydrol. Process., 20, 2887-2900.
- EL ADLOUNI, S., T.B.M.J. OUARDA, X. ZHANG, R. ROY et B. BOBÉE. (2007). Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour. Res., 43. W03410.
- FILL, H.D. et J.R. STEDINGER (1998). Using regional regression within index flood procedures et an empirical Bayes estimator. J. Hydrol., 210, 128‑145.
- FORTIN, V., B. BOBÉE, L. DUCKSTEIN et Z. BARGAOUI (1995). Détermination floue des zones hydrologiques homogènes. Dans : Modeling and management of sustainable basin-scale. Water Ressour. Sys., 231, 367-375.
- GIRARD, C., T.B.M.J. OUARDA et B. BOBÉE (2004). Étude du biais dans le modèle log-linéaire d’estimation régionale, Rev. Can. Gen. Civ., 31, 1-8.
- GREHYS (Groupe de recherche en hydrologie statistique) (1996a). Presentation and review of some methods for regional flood frequency analysis. J. Hydrol., 186, 63-84.
- GREHYS (Groupe de recherche en hydrologie statistique) (1996b). Inter-comparison of regional flood frequency procedures for Canadian rivers. J. Hydrol., 186, 85-103.
- HAMZA, A., T.B.M.J. OUARDA, R.S. DURRANS et B. BOBÉE (2001). Développement de modèles de queues et d’invariance d’échelle pour l’estimation régionale des débits d’étiage. Rev. Can. Gen. Civ., 28, 291‑304.
- HEJAZI, M.I. et G.E. MOGLEN (2007). Regression-based approach to low flow prediction in the Maryland Piedmont region under joint climate and land use change, Hydrol. Process., 21, 1793‑1801.
- HODGKINS, G.A., R.W. DUDLEY et T.G. HUNTINGTON (2003). Changes in the timing of high river flows in New England over the 20th century. J. Hydrol., 278, 244-252.
- HUNDECHA, Y., T.B.M.J. OUARDA et A. BARDOSSY (2008). Regional estimation of the parameters of a rainfall-runoff model at ungauged catchments using spatial structures of the parameters within the canonical physiographic-climatic space. Water Resour. Res., 44, W01427, doi:10.1029/2006WR005439, 2008.
- JANG, J.S.R., C.T. SUN et E. MIZUTANI (1997). Neuro-Fuzzy and soft computing, Prentice-Hall: Englewood Cliffs, NJ.
- JAVELLE, P., T.B.M.J. OUARDA, M. LANG, B. BOBÉE, G. GALEA et J.M. GRESILLON (2002). Development of regional flow-duration-frequency curves based on the index-flood method. J. Hydrol., 258, 249-259.
- JAVELLE, P., T.B.M.J. OUARDA et B. BOBÉE (2003). Flood regime definition using the flood-duration-frequency approach: Application to the provinces of Quebec and Ontario, Canada. Hydrolog. Proces. 17, 3717-3736.
- JOSEPH, G., K. CHOKMANI, T.B.M.J. OUARDA et A. ST‑HILAIRE. (2008). Une évaluation de la robustesse de la méthode du krigeage canonique pour l’analyse régionale des débits. Rev. Sci. Eau, 20, 367-380.
- JOURDAIN, V., T.B.M.J. OUARDA, J.M. CUNDERLIK et S. EL ADLOUNI (2008). Non-stationary regional QdF analysis: an application to the estimation of spring flood quantiles in the eastern part of North America. Hydrol. Process. (Accepté).
- KHALIQ, M.N., T.B.M.J. OUARDA, P. GACHON et B. BOBÉE (2006). Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: A review. J. Hydrol., 329, 534-552, doi:10.1016/j.jhydrol.2006.03.004.
- LANG, M. (1997). Estimation régionale du gradex des pluies : limites de l’approche par année-station. Séminaire hydrologique sur fonds Jacques Cartier, « Les méthodes d’estimation régionale en hydrologie », Compte rendu, Lyon, Édition Cemagref, 26-28 mai.
- LAAHA, G. et G. BLÖSCHL (2005). Low flow estimates from short stream flow records - a comparison of methods, J. Hydrol., 306, 264‑286.
- LAAHA, G. et G. BLÖSCHL (2006) A comparison of low flow regionalisation methods - catchment grouping. J. Hydrol., 323, 193-214.
- LANG, M., T.B.M.J. OUARDA et B. BOBÉE (1999). Towards operational guidelines for over-threshold modeling. J. Hydrol., 225, 103-117.
- LECLERC, M. et T.B.M.J. OUARDA (2007). Non-stationary regional flood frequency analysis at ungauged sites, J. Hydrol., 343, 254-265.
- LIN, G.F. et L.H. CHEN (2006). Identification of homogeneous regions for regional frequency analysis using the self-organizing map. J. Hydrol., 324,1-9.
- McCUEN, R.H. et R.E. BEIGHLEY (2003). Seasonal flow frequency analysis. J. Hydrol., 279, 43-56.
- McDONNELL, J.J. et R. WOODS (2004). On the need for catchment classification. J. Hydrol., 299, 2-3.
- McGUIRE, K.J., J.J. McCONNELL, M. WEILER, C. KENDALL, B. McGLYNN et J. SEIBERT, (2005). The role of topography on catchment-scale water residence time. Water Resour. Res., 41, W05002, doi: 10.1029/2004WR003657.
- MERZ, R., U. PIOCK-ELLENA, G. BLÖSCHL et D. GUTKNECHT (1999). Seasonality of flood processes in Austria. Dans : Hydrological Extremes, Understanding, Predicting, Mitigating, L. Gottschalk, J.C. Olivry, D. Reed et D. Rosbjerg (Éditeurs). IAHS Publ., 255, 273-278.
- MEUNIER, M. (2001). Regional flow-duration-frequency model for tropical island of Martinique. J. Hydrol., 247, 31-53.
- NERC, (2008). WINFAP-FEH version 2.0, Wallingford HydroSolutions Ltd. Site web: http://www.nerc-wallingford.ac.uk/ih/feh/html/software.html.
- NGUYEN, V.T.V. et G.R. PANDEY (1994). Regional flood estimation using regression methods: A comparative study. Water Res. Manag. Eng. Ser., Research Report, WRME94/1, McGill University, Montreal, Qc, 37 p.
- OUARDA, T.B.M.J., M. LANG, B. BOBÉE, J. BERNIER et P. BOIS (1999). Synthèse de modèles régionaux d’estimation de crue utilisés en France et au Québec. Rev. Sci. Eau, 12, 155-182.
- OUARDA, T.B.M.J., M. HACHÉ, P. BRUNEAU et B. BOBÉE (2000). Regional flood peak and volume estimation in a northern Canadian basin. ASCE J. Cold. Reg. Eng., 14, 176-191.
- OUARDA, T.B.M.J., C. GIRARD, G. CAVADIAS et B. BOBÉE, (2001). Regional flood frequency estimation with canonical correlation analysis. J. Hydrol., 254,157‑173.
- OUARDA, T.B.M.J., H. GINGRAS, A. KOUIDER, Z.R. RUDOLF, M. HACHÉ, M. BARBÉ et B. BOBÉE (2002). REGIONS, A general and automatic model for flood and drought regional estimation at ungauged basins, 1st Biennial Workshop of the Statistical Hydrology Committee of the CGU-HS, 2002 Annual Scientific Meeting of the CGU, Banff, Canada, 18 - 21 mai 2002.
- OUARDA, T.B.M.J., N. GIGNAC, A. KOUIDER, H. GINGRAS, K. CHOKMANI, V.D. HOANG et B. BOBÉE (2003). Estimation régionale et cartographie des crues au Québec - Canada. Session “Regional Estimation”, Colloque « Estimation of Extreme Hydrological Events », 16e EJC, Lyon, France, 1-2 décembre 2003.
- OUARDA, T.B.M.J., V. JOURDAIN, N. GIGNAC, H. GINGRAS, H. HERRERA et B. BOBÉE, (2005). Développement d’un modèle hydrologique visant l’estimation des débits d’étiage pour le Québec habité, ARIDE. INRS-ETE, Rapport de recherche R-684-f1., 174 p.
- OUARDA, T.B.M.J., J. CUNDERLIK, A. ST-HILAIRE, M. BARBET, P. BRUNEAU et B. BOBÉE (2006). Data-based comparison of seasonality-based regional flood frequency methods. J. Hydrol., doi: 10.1016/j.hydrol.2006.03.023, 330: 329-339.
- OUARDA, T.B.M.J. (2007). Statistical estimation of low flow characteristics at ungauged basins. Atelier de l’ACRH “Prediction in ungauged basins, low flows”, Québec, Qc., 12‑13 avril 2007.
- OUARDA, T.B.M.J., K.M. BA, C. DIAZ-DELGADO, A. CARSTENU, K. CHOKMANI, H. GINGRAS, E. QUENTIN, E. TRUJILLO et B. BOBÉE (2008). Regional flood frequency estimation at ungauged sites in the Balsas River Basin, Mexico. J. Hydrol., doi: 10.1016/j.hydrol.2007.09.031, 348: 40-58.
- REED, D.W. et A.J. ROBSON (1999). Flood Estimation Handbook, 3. Institute of Hydrology, Wallingford, GB.
- RAO, A.R. et V.V. SRINIVAS (2006a). Regionalisation of watersheds by fuzzy cluster analysis, J. Hydrol., 318, 57‑79.
- RAO, A.R. et V.V. SRINIVAS (2006b). Regionalisation of watersheds by hybrid-cluster analysis, J. Hydrol., 318, 37‑56.
- REIS, D.S., J.R. STEDINGER et E.S. MARTINS (2005), Bayesian GLS regression with application to LP3 regional skew estimation, Water Resour. Res., 41, W10419, doi:10.1029/2004WR003445.
- RENCHER, A. C. (2002) Methods of multivariate analysis. Second edition. Wiley Series in Probability and Statistics. John Wiley et Sons, New York, ÉU, 738 p.
- RIBATET, M., E. SAUQUET, J.M. GRÉSILLION et T.B.M.J. OUARDA (2007a). A regional Bayesian POT model for flood frequency analysis, Stoc. Environ. Res. Risk Assess., DOI 10.1007/s00477-006-0068-z, 21, 327‑339.
- RIBATET, M., E. SAUQUET, J.M. GRÉSILLON et T.B.M.J. OUARDA (2007b). Usefulness of the reversible jump Markov chain Monte Carlo model in regional flood frequency analysis, Water Resour. Res., 43, W08403, doi:10.1029/2006WR005525, 1-14.
- RIBATET, M., T.B.M.J. OUARDA, E. SAUQUET et J.M. GRÉSILLON. (2008). Modelling all exceedances above a threshold using an extremal dependence structure: Inference on several flood characteristics, Water Resour. Res., (Accepté).
- SAUQUET, E., (2000). Une cartographie des écoulements annuels et mensuels d’un grand bassin versant structurée par la topologie du réseau hydrographique, Thèse de doctorat, Unité de Recherche Hydrologie-Hydraulique, Cemagref (Lyon), Institut National Polytechnique de Grenoble, France, 356 p. + annexes.
- SEIDOU, O., T.B.M.J. OUARDA, M. BARBET, P. BRUNEAU et B. BOBÉE (2006a). A parametric Bayesian combination of local and regional information in flood frequency analysis, Water Resour. Res., 42, W11408, Doi: 10.1029/2005WR004397, 1-21.
- SEIDOU, O., T.B.M.J. OUARDA, L. BILODEAU, M. HESSAMI, A. ST-HILAIRE et P. BRUNEAU (2006b). Modeling ice growth on Canadian lakes using artificial neural networks, Water Resour. Res., 42, W11407 doi: 10.1029/2005WR004622, 1-15.
- SHU, C. et D.H. BURN (2004a). Homogeneous pooling group delineation for flood frequency analysis using a fuzzy expert system with genetic enhancement. J. Hydrol., 291, 132-149.
- SHU, C. et D.H. BURN (2004b). Artificial neural network ensembles and their application in pooled flood frequency analysis. Water Resour. Res., 40, Art. No. W09301.
- SHU, C. et T.B.M.J. OUARDA (2007). Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space. Water Resour. Res., 43, W07438, doi:10.1029/2006WR005142, 1-12.
- SHU, C. et T.B.M.J. OUARDA (2008). Regional flood frequency analysis at ungauged sites using the Adaptive Neuro-Fuzzy Inference System. J. Hydrol., (sous presse).
- SKAUGEN, T. et T. VAeRINGSTAD (2005). A methodology for regional flood frequency estimation based on scaling properties, Hydrol. Process., 19, 1481‑1495.
- SPENCE, C. et P. SASO. (2005). A hydrological neighbourhood approach to predicting streamflow in the Mackenzie Valley. Prediction in Ungauged Basins: Approaches for Canada’s Cold Regions C. Spence, J.W. Pomeroy et A. Pietroniro (Éditeurs). Can. Water Resour. Ass., 21-44.
- STEDINGER, J.R. et H.D. FILL (1997). Using regional regression within Index Flood procedures and an empirical Bayesian estimator. Communication personnelle. 29p.
- ST-HILAIRE, A., T.B.M.J. OUARDA, M. LACHANCE, B. BOBÉE, M. BARBET et P. BRUNEAU (2003). Régionalisation des précipitations : une revue bibliographique des développements récents, Rev. Sci. Eau, 16, 27-54.
- THOMPSON, R. (1999). A time-series analysis of the changing seasonality of precipitation in the British Isles and neighbouring areas, J. Hydrol., 224, 169-183.
- TRAMBLAY,Y., A. ST-HILAIRE et T.B.M.J. OUARDA. (2007). Modelling extreme suspended sediment concentrations in North America: frequency analysis and correlations with watershed characteristics. Proceedings of Symposium HS2005 at IUGG2007: Water Quality and Sediment Behaviour of the Future: Predictions for the 21st Century, Perugia, Italie, juillet 2007. IAHS Publ. 314, 2007.
- WAGENER, T. et H.S. WHEATER (2006). Parameter estimation and regionalisation for continuous rainfall-runoff models including uncertainty. J. Hydrol., 320, 132‑154, doi:10.1016/j.hydrol.2005.07.015.
- YOKOO, T., S. KAZAMA, M.H. SAWAMOTO et NISHIMURA (2001). Regionalization of lumped water balance model parameters. J. Hydrol., 246:209-222.
- ZUO, Y. et R. SERFLING (2000) General notions of statistical depth function. Ann. Statist., 28 461‑482.