Abstracts
Résumé
Les milieux aquatiques constituent des modèles essentiels pour comprendre le rôle de la biodiversité et des interactions biotiques et abiotiques sur la structure des communautés et sur le fonctionnement des écosystèmes. La dernière décennie a été marquée par d’importantes avancées :
On cerne mieux le rôle de l’hétérogénéité des organismes au sein des réseaux, et on s’éloigne des approches linéaires où les organismes sont agrégés au sein de niveaux trophiques distincts. L’étude des réseaux trophiques sur la base de groupes fonctionnels a permis d’intégrer le rôle de la taille et de l’omnivorie au sein des communautés. La prise en compte des organismes de la boucle microbienne au sein des réseaux a également permis de mieux comprendre les mécanismes de recyclage et de transfert de matière vers les niveaux trophiques supérieurs;
L’analyse topologique des réseaux permet de considérer les réseaux trophiques dans leur complexité et de dégager leurs caractéristiques architecturales. Des tentatives sont faites pour pondérer les liens trophiques entre les espèces par une probabilité d’occurrence ou une force d’interaction, notamment à travers la prise en compte des traits fonctionnels des espèces, de la taille relative proie / prédateur et de règles d’allométrie.
L’étude de réseaux trophiques de biotopes homogènes, comme les zones pélagiques des lacs, a permis de réelles avancées sur les facteurs de contrôles ascendants et descendants des communautés. Cependant, l’intégration de l’hétérogénéité verticale, horizontale et temporelle des écosystèmes a ajouté non seulement un réalisme important à la structure des réseaux trophiques, mais a permis de considérer la dynamique temporelle des couplages entre systèmes (zone pélagique - zone littorale, eau - sédiment, bassin versant - écosystème aquatique, amont - aval, etc.);
L’intégration du couplage entre les cycles biogéochimiques et les interactions trophiques progresse, aidée en cela par le développement de la stoechiométrie écologique, qui étudie les liens entre la composition des organismes en éléments chimiques (tels le carbone, l’azote ou le phosphore) et les interactions biotiques (production primaire, herbivorie, décomposition, etc.);
Les approches comparatives, les échanges conceptuels et les couplages effectifs entre écologie des milieux terrestres et écologie des milieux aquatiques se multiplient;
De nouveaux concepts et outils permettent une prise en compte de plus en plus fine de l’hétérogénéité et de la complexité. Le poids des interactions non trophiques, par exemple des mécanismes d’information chimique (allélopathie, etc.), est de plus en plus étudié. Le suivi ou l’addition de traceurs, comme les isotopes stables, a permis de déceler de nouveaux patrons et d’intégrer de nombreux processus, depuis le niveau moléculaire jusqu’à l’échelle de l’écosystème (analyse des positions trophiques, analyse de l’importance des apports allochtones, etc.). L’objectif est maintenant d’intégrer cette complexité multidimensionnelle pour parvenir à une meilleure capacité de prédiction de la limnologie en tant que discipline pour les sociétés humaines.
Mots clés:
- réseau trophique,
- diversité fonctionnelle,
- hétérogénéité,
- topologie des réseaux,
- stoechiométrie écologique
Abstract
Aquatic ecosystems constitute essential models to understand the role of biodiversity and that of biotic and abiotic interactions on both community structure and ecosystem functioning. The last decade was marked by important breakthroughs:
The role of organism heterogeneity within food webs is better defined and the linear approaches in which the organisms are aggregated within distinct trophic levels are progressively left aside. Food-web study on the basis of functional groups made it possible to integrate the role of body size and omnivory within communities. Including the organisms of the microbial loop in food webs has increased our understanding of organic matter recycling and nutrient transfer to higher trophic levels;
The topological analysis of the food webs allows to consider trophic networks in their complexity and to establish their architectural characteristics. Attempts are made to counterbalance interspecific trophic links by an occurrence probability or by an interaction strength, in particular by taking into account the functional features of species, prey/predator relative sizes and allometric rules;
Food-web studies in homogeneous biotopes, such as the pelagic zones of lakes, allowed a significant progress in the understanding of the top-down vs. bottom-up control of communities. However, taking into account the vertical, horizontal or temporal heterogeneity of the ecosystems not only increased the realism of food-web structures, but made it possible to consider the temporal dynamics of the couplings between various systems (pelagic zone/littoral zone, water/sediment, catchment area/aquatic ecosystem, upstream/downstream, etc.);
The coupling between biogeochemical cycles and trophic interactions is progressively integrated. This is favoured by the development of ecological stoichiometry, which studies the links between the chemical composition of organisms (in carbon, nitrogen or phosphorus) and biotic interactions (primary production, herbivory, decomposition, etc.);
There is a significant increase in the comparative approaches, the conceptual exchanges and the effective couplings between the ecology of terrestrial and aquatic systems;
New concepts and tools allow an increasingly sharp consideration of heterogeneity and complexity from the molecular level up to the ecosystem. The importance of non-trophic interactions, for example the role of chemical-information mechanisms (allelopathy, etc.), is more and more studied. The monitoring or the addition of tracers, such as stable isotopes, made it possible to detect new patterns and to integrate many processes, from the molecular level to the ecosystem scale (analysis of the trophic positions of species, analysis of the allochtonous contributions, etc.).
The objective is now to integrate this multidimensional complexity in order to reach a better prediction capacity of limnology as a discipline for human societies.
Key words:
- Aquatic food web,
- functional diversity,
- heterogeneity,
- food-web topology,
- ecological stoichiometry
Appendices
Références bibliographiques
- AMBLARD C., J.C. BOISSON, G. BOURDIER, D. FONTVIEILLE, X. GAYTE et T. SIME-NGANDO (1998). Microbial ecology in aquatic systems: A review from viruses to protozoa. Rev. Sci. Eau, 11, 145-162.
- ANDREWS J.E., J.M. GREENAWAY et P.F. DENNIS (2004). Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary: Hunts Bay, Kingston Harbour, Jamaica. Estuar. Coast. Shelf Sci., 46, 743-756.
- BARRAT A., M. BARTHÉLEMY, R. PASTOR-SATORRAS et A. VESPIGNANI (2004). The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA, 101, 3747‑3752.
- BEC A., C. DESVILETTES, A. VÉRA, C. LEMARCHAND, D. FONTVIEILLE et G. BOURDIER (2003). Nutritional quality of a freshwater heterotrophic flagellate: trophic upgrading of its microalgal diet for Daphnia hyalina. Aquat. Microb. Ecol., 32, 203-207.
- BELL T. (2002). The ecological consequences of unpalatable prey: phytoplankton response to nutrient and predator additions. Oikos, 99, 59-68.
- BERGLUND J., U. MÜREN, U. BÄMSTEDT et A. ANDERSSON (2007). Efficiency of a phytoplankton-based and a bacteria-based food web in a pelagic marine system. Limnol. Oceanogr., 52, 121-131.
- BERLOW E.L., A.M. NEUTEL, J.E. COHEN, P. DE RUITER, B. EBENMAN, M. EMMERSON, J.W. FOX, V.A.A. JANSEN, J.I. JONES, G.D. KOKKORIS, D.O. LOGOFET, A.J. MCKANE, J.M. MONTOYA et O. PETCHEY (2004). Interaction strengths in food webs: issues and opportunities. J. Anim. Ecol., 73, 585-598.
- BERSIER L.-F., C. BANASEK-RICHTER et M.-F. CATTIN (2002). Quantitative descriptors of food-web matrices. Ecology, 83, 2394-2407.
- BERTOLO A., G. LACROIX et F. LESCHER-MOUTOUÉ (1999a). Scaling food chains in aquatic mesocosms: do the effects of depth override the effects of planktivory? Oecologia, 121, 55-65.
- BERTOLO A., G. LACROIX, F. LESCHER-MOUTOUÉ et C. CARDINAL-LEGRAND (2000). Plankton dynamics in planktivore- and piscivore-dominated mesocosms. Arch. Hydrobiol., 147, 327-349.
- BERTOLO A., G. LACROIX, F. LESCHER-MOUTOUÉ et S. SALA (1999b). Effects of physical refuges on fish-plankton interactions. Freshwater Biol., 41, 795-808.
- BODINI A. (2000). Reconstructing trophic interactions as a tool for understanding and managing ecosystems: application to a shallow eutrophic lake. Can. J. Fish. Aquat. Sci., 57, 1999-2009.
- BONTES B.M., R. PEL, B.W. IBELINGS, H.T.S. BOSCHKER, J.J. MIDDELBURG et E. VAN DONK (2006). The effects of biomanipulation on the biogeochemistry, carbon isotopic composition and pelagic food web relations of a shallow lake. Biogeosci., 3, 69-83.
- BRETT M.T. et C.R. GOLDMAN (1996). A meta-analysis of the freshwater trophic cascade. Proc. Natl. Acad. Sci. USA, 93, 7723-7726.
- BRETT M.T. et C.R. MORGAN (1997). Consumer versus resource control in freshwater pelagic food webs. Science, 275, 384-386.
- BROOKS J.L. et S.I. DODSON (1965). Predation, body size, and composition of the plankton. Science, 150, 28-35.
- BROWN J.H., J.F. GILLOOLY, A.P. ALLEN, V.M. SAVAGE et G.B. WEST (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771-1789.
- BURNS, C.W. (1968). Relationship between body size of filter-feeding Cladocera and maximum size of particle ingested. Limnol. Oceanogr., 13, 675-678.
- CARPENTER S.R. (1988). Transmission of variance through lake food webs. Dans : Complex interactions in lake communities, CARPENTER S.R. (Éditeur). Springer Verlag, 119‑135.
- CARPENTER S.R. et J.F. KITCHELL (Éditeurs), 1993. The trophic cascade in lakes. Cambridge University Press, 385 p.
- CATTIN M.-F., L.-F. BERSIER, C. BANASEK-RICHTER, R. BALTENSPERGER et J.-P. GABRIEL (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427, 835-839.
- CHASE J.M. (2000). Are there real differences among aquatic and terrestrial food webs? TREE, 15, 408-412.
- CHERIF M. et M. LOREAU (2007). Stoichiometric constraints on resource use, competitive interactions, and elemental cycling in microbial decomposers. Am. Nat., 169, 709-724.
- CHRISTOFFERSEN K., B. RIEMANN, A. KLYSNER et M. SONDERGAARD (1993). Potential role of fish predation and natural populations of zooplankton in structuring a plankton community in eutrophic lake water. Limnol. Oceanogr., 38, 561-573.
- COHEN J.E., R.A. BEAVER, S.H. COUSINS, D.L. DE ANGELIS, L. GOLDWASSER, K.L. HEONG, R.D. HOLT, A.J. KOHN, J.H. LAWTON, N. MARTINEZ, R. O’MALLEY, L.M. PAGE, B.C. PATTEN, S.L. PIMM, G.A. POLIS, M. REJMANEK, T.W. SCHOENER, K. SCHOENLY, W.G. SPRULES, J.M. TEAL, R.E. ULANOWICZ, P.H. WARREN, H.M. WILBUR et P. YODZIS (1993). Improving food webs. Ecology, 74, 252‑258.
- COHEN J.E., T. JONSSON et S.R. CARPENTER (2003). Ecological community description using the food web, species abundance, and body size. Proc. Nat. Acad. Sci. USA, 100, 1781-1786.
- COHEN J.E., C.N. NEWMAN et F. BRIAND (1985). A stochastic theory of community food webs. I. Models and aggregated data. Proc. R. Soc. London B, 224, 421-448.
- COLE J.J. (1999). Aquatic microbiology for ecosystem scientists: New and recycled paradigms in ecological microbiology. Ecosystems, 2, 215-225.
- COLE J.J., N.F. CARACO, G.W. KLING et T.W. KRATZ (1994). Carbon dioxide supersaturation in the surface waters of lakes. Science, 265, 1568-1570.
- CROSS W.F., J.P. BENSTEAD, P.C. FROST et S.A. THOMAS (2005). Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshwater Biol.,50, 1895-1912.
- DANGER M., G. LACROIX, C. OUMAROU, D. BENEST et J. MERIGUET (2008). Effects of food-web structure on periphyton stoichiometry in eutrophic lakes: A long-term mesocosm study. Freshwater Biol. (sous presse).
- DANGER M., J. LEFLAIVE, C. OUMAROU, L. TEN-HAGE et G. LACROIX (2007b). Control of phytoplankton-bacteria interactions by stoichiometric constraints. Oikos,116, 1079-1086.
- DANGER M., C. OUMAROU, D. BENEST et G. LACROIX (2007a). Bacteria can control stoichiometry and nutrient limitation of phytoplankton. Funct. Ecol., 21, 202-210.
- DANOVARO R., C. CORINALDESI, M. FILIPPINI, U.R. FISCHER, M.O. GESSNER, S. JACQUET, M. MAGAGNINI et M. VELIMIROV (2008). Viriobenthos in fresh water and marine sediments: a review. Freshwater Biol. (sous presse) ().
- DAUFRESNE T. et M. LOREAU (2001a). Plant-herbivore interactions and ecological stoichiometry: when do herbivores determine plant nutrient limitation? Ecol. Lett., 4, 196-206.
- DAUFRESNE T. et M. LOREAU (2001b). Ecological stoichiometry, Primary producer-decomposer interactions, and ecosystem persistence. Ecology, 82, 3069-3082.
- DODSON S.I. (1974). Zooplankton competition and predation - experimental test of size-efficiency hypothesis. Ecology, 55, 605-613.
- DRENNER, R.W. et K.D. HAMBRIGHT (1999). Review: biomanipulation of fish assemblages as a lake restoration technique. Arch. Hydrobiol., 146, 129-165.
- DUHAMEL S. et S. JACQUET (2006). Flow cytometric analysis of bacteria- and virus-like particles in lake sediments. J. Microbiol. Meth., 64, 316-332.
- ELSER J.J. (2006). Biological stoichiometry: A chemical bridge between ecosystem ecology and evolutionary biology. Am. Nat., 168, 25-35.
- ELSER J.J., K. ACHARYA, M. KYLE, J. COTNER, W. MAKINO, T. MARKOW, T. WATTS, S. HOBBIE, W. FAGAN, J. SCHADE, J. HOOD et R.W. STERNER (2003). Growth rate–stoichiometry couplings in diverse biota. Ecol. Lett., 6, 936-943.
- ELSER J.J., M.E.S. BRACKEN, E.E. CLELAND, D.S. GRUNER, W.S. HARPOLE, H. HILLEBRAND, J.T. NGAI, E.W. SEABLOOM, J.B. SHURIN et J.E. SMITH (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett., 10, 1135-1142.
- ELSER J.J., D. DOBBERFUHL, N.A. MACKAY et J.H. SCHAMPEL (1996). Organism size, life history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. BioSci., 46, 674-684.
- ELSER J.J., M.M. ELSER, N.A. MACKAY et S.R. CARPENTER (1988). Zooplankton-mediated transitions between N and P limited algal growth. Limnol. Oceanogr., 33, 1-14.
- ELSER J.J., W.F. FAGAN, R.F. DENNO, D.R. DOBBERFUHL, A. FOLARIN, A. HUBERTY, S. INTERLANDI, S.S. KILHAM, E. MCCAULEY, K.L. SCHULZ, E.H. SIEMANN et R.W. STERNER (2000a). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
- ELSER J.J., R.W. STERNER, A.E. GALFORD, T.H. CHRZANOWSKI, D.L. FINDLAY, K.H. MILLS, M.J. PATERSON, M.P. STAINTON et D.W., SCHINDLER (2000b). Pelagic C:N:P stoichiometry in a eutrophied lake: responses to a whole-lake food-web manipulation. Ecosystems, 3, 293-307.
- ELSER, J.J., R.W. STERNER, E. GOROKHOVA, W.F. FAGAN, T.A. MARKOW, J.B. COTNER, J.F. HARRISON, S.E. HOBBIE, G.M. ODELL et L.J. WEIDER (2000c). Biological stoichiometry from genes to ecosystems. Ecol. Lett., 3, 540-550.
- ELSER J.J. et J. URABE (1999). The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology, 80, 735-751.
- EMMERSON M.C. et D. RAFFAELLI (2004). Predator-prey body size, interaction strength and the stability of food webs. J. Anim. Ecol., 73, 399-409.
- EMMERSON M. et J.M. YEARSLEY (2004). Weak interactions, omnivory and emergent food-web properties. Proc. R. Soc. Lond. B, 271, 397-405.
- FROST P.C. et J.J. ELSER (2002). Effects of light and nutrients on the net accumulation and elemental composition of epilithon in boreal lakes. Freshwater Biol., 47, 173-183.
- GILBERT J.J. (1994). Jumping behavior in the oligotrich ciliates Strobilidium velox and Halteria grandinella, and its significance as a defense against rotifer predators. Microb. Ecol., 27, 189-200.
- GILLER P.S., H. HILLEBRAND, U.G. BERNINGER, M.O. GESSNER, S. HAWKINS, P. INCHAUSTI, C. INGLIS, H. LESLIE, B. MALMQVIST, M.T. MONAGHAN, P.J. MORIN et G. O’MULLAN (2004). Biodiversity effects on ecosystem functioning: emerging issues and their experimental test in aquatic environments. Oikos, 104, 423-436.
- GLIWICZ Z.M. (2003). Between hazards of starvation and risk of predation: the ecology of offshore animals. Dans : Excellence in Ecology. Book 11, KINNE O. (Étideur.), International Ecology Institute, Oldendorf/Luhe.
- GRIMM N.B., S.E. GERGEL, W.H. MCDOWELL, E.W. BOYER, CL. DENT, P. GROFFMAN, S.C. HART, J. HARVEY, C. JOHNSTON, E. MAYORGA, M.E. MCCLAIN et G. PINAY (2003). Merging aquatic and terrestrial perspectives of nutrient biogeochemistry. Oecologia, 137, 485-501.
- HÅKANSON L. (2005). The importance of lake morphometry for the structure and function of lakes. Int. Rev. Hydrobiol., 90, 433-461.
- HALAJ J. et D.H. WISE (2001). Terrestrial trophic cascades: how much do they trickle? Am Nat., 157, 262-281.
- HANSSON L.A., C. BRÖNMARK, P. NYSTÖM, L. GREENBERG, P. LUNDBERG, A. NILSSON, A. PERSSON, L.B. PETTERSSON, P. ROMARE et L.J. TRANVIK (1998). Consumption patterns, complexity and enrichment in aquatic food chains. Proc. R. Soc. London B, 265, 901-906.
- HESSEN D.O. (2005). Aquatic food webs: stoichiometric regulation of flux and fate of carbon. Int. Assoc. Theoret. Appl. Limnol., - Proceedings 29, 39-49.
- HULOT, F.D. et J. HUISMAN (2004). Allelopathic interactions between phytoplankton species: The roles of heterotrophic bacteria and mixing intensity. Limnol. Oceanogr., 49, 1424-1434.
- HULOT F.D., G. LACROIX, F. LESCHER-MOUTOUÉ et M. LOREAU (2000). Functional diversity governs response to nutrient enrichment. Nature, 405, 340-344.
- JACQUET S., I. DOMAIZON, S. PERSONNIC, A.S. PRADEEP RAM, M. HEDAL, S. DUHAMEL et T. SIME-NGANDO (2005). Estimates of protozoan- and viral-mediated mortality of bacterioplankton in Lake Bourget (France). Freshwater Biol., 50, 627-645.
- JACQUET S., I. DOMAIZON, S. PERSONNIC et T. SIME-NGANDO (2007). Do small grazers influence virus-induced mortality of bacteria in Lake Bourget (France)? Fund. Appl. Limnol. Arch. Hydrobiol., 170, 125-132.
- JARDILLIER L., D. BOUCHER, S. PERSONNIC, S. JACQUET, A. THENOT, D. SARGOS, C. AMBLARD et D. DEBROAS (2005). Relative importance of nutrients and mortality factors on prokaryotic community composition in two lakes of different trophic status: Microcosm experiments. FEMS Microbiol. Ecol., 53, 429‑443.
- JEPPESEN E., M. MEERHOFF, B.A. JACOBSEN, R.S. HANSEN, M. SØNDERGAARD, J.P. JENSEN, T.L. LAURIDSEN, N. MAZZEO et C.W.C. BRANCO (2007a). Restoration of shallow lakes by nutrient control and biomanipulation - The successful strategy varies with lake size and climate. Hydrobiologia, 581, 269-285.
- JEPPESEN E., M. SØNDERGAARD, M. MEERHOFF, T.L. LAURIDSEN et J.P. JENSEN (2007b). Shallow lake restoration by nutrient loading reduction - Some recent findings and challenges ahead. Hydrobiologia, 584, 239-252.
- JUSTUS J. (2006). Loop analysis and qualitative modeling: limitations and merits. Biol. Philos., 21, 647-666.
- KARLSSON J., D. LYMER, K. VREDE et M. JANSSON (2007). Differences in efficiency of carbon transfer from dissolved organic carbon to two zooplankton groups: an enclosure experiment in an oligotrophic lake. Aquat. Sci., 69, 108-114.
- KATECHAKIS A. et H. STIBOR (2006). The mixotroph Ochromonas tuberculata may invade and suppress specialist phago- and phototroph plankton communities depending on nutrient conditions. Oecologia, 148, 692-701.
- KAY A.D., I.W. ASHTON, E. GOROKHOVA, A.J. KERKHOFF, A. LIESS et E. LITCHMAN (2005). Toward a stoichiometric framework for evolutionary biology. Oikos, 109, 6-17.
- KLEIN BRETELER W.C.M., M. KOSKI et S. RAMPEN (2004). Role of essential lipids in copepod nutrition: no evidence for trophic upgrading of food quality by a marine ciliate. Mar. Ecol. Prog. Ser., 274, 199-208.
- KLEIN BRETELER W.C.M., N. SCHOGT, M. BAAS, S. SCHOUTEN et G.W. KRAAY (1999). Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar. Biol., 135, 191-198.
- KNIGHT T.M., M.W. MCCOY, J.M. CHASE, K.A. MCCOY et R.D. HOLT (2005). Trophic cascades across ecosystems. Nature, 437, 880-883.
- LACROIX G., F. LESCHER-MOUTOUÉ et A. BERTOLO (1999). Biomass and production of plankton in shallow and deep lakes: are there general patterns? Ann. Limnol. - Int. J. Limnol., 35, 111-122.
- LACROIX G., F. LESCHER-MOUTOUÉ et R. POURRIOT (1996). Trophic interactions, nutrient supply, and structure of freshwater pelagic food webs. Dans : Aspects in the genesis and maintenance of biological diversity. HOCHBERG M., J. CLOBERT et R. BARBAULT (Éditeurs), Oxford University Press, 162-179.
- LEFÈVRE E., C. BARDOT, C. NOËL, J.-F. CARRIAS, E. VISCOGLIOSI, C. AMBLARD et T. SIME-NGANDO (2007). Unveiling fungal zooflagellates as members of freshwater picoeukaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ. Microbiol., 9, 61-71.
- LEFLAIVE J., G. LACROIX, Y. NICAISE et L. TEN-HAGE (2008). Colony induction and growth inhibition in Desmodesmus quadrispina (Chlorococcales) by allelochemicals released from the filamentous alga Uronema confervicolum (Ulotrichales). Environ. Microbiol. (sous presse) ().
- LEFLAIVE J. et L. TEN-HAGE (2007). Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol., 52, 199-214.
- LEIBOLD M.A. (2005). A prospectus for future aquatic food web studies. Dans : Aquatic food webs: An ecosystem approach. BELGRANO A., U.M. SCHARLER, J. DUNNE et R.E. ULANOWICZ R.E. (Éditeurs). Oxford Univ. Press, 208-210.
- LEIBOLD M.A., J.M. CHASE, J.B. SHURIN et A.L. DOWNING (1997). Species turnover and the regulation of trophic structure. Annu. Rev. Ecol. Syst., 28, 467-494.
- LEVINS R. (1974). The qualitative analysis of partially specified systems. Ann. N.Y. Acad. Sci., 231, 123-138.
- LYCHE A., T. ANDERSEN, K. CHRISTOFFERSEN, D.O. HESSEN, A. HANSEN et A. KLYSNER (1996). Mesocosm tracer studies. 2. The fate of primary production and the role of consumers in the pelagic carbon cycle of a mesotrophic lake. Limnol. Oceanogr., 41, 475-487.
- MCCANN K., A. HASTINGS et G.R. HUXEL (1998). Weak trophic interactions and the balance of nature. Nature, 395, 794-798.
- MCLAREN B.E. et R.O. PETERSON (1994). Wolves, moose, and tree-rings on Isle Royale. Science, 266, 1555–1558.
- MEDINA-SANCHEZ J.-M., M. VILLAR-ARGAIZ et P. CARRILLO (2004). Neither with nor without you: A complex algal control on bacterioplankton in a high mountain lake. Limnol. Oceanogr., 49, 1722-1733.
- MEIJER M.L., I. DE BOOIS, M. SCHEFFER, R. PORTIELJE et H. HOSPER (1999). Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. Dans : Shallow Lakes ’98: Trophic Interactions in Shallow Freshwater and Brackish Waterbodies. N. WALZ et B. NIXDORF B. (Éditeurs), Hydrobiologia, 408/409, 13-30.
- MILLER T.E., J.H. BURNS, P. MUNGUIA, E.L. WALTERS, J.M. KNEITEL, P.M. RICHARDS, N. MOUQUET et H.L. BUCKLEY (2005). A critical review of twenty years’ use of the resource-ratio theory. Am. Nat., 165, 439‑448.
- MOE S.J., R.S. STELZER, M.R. FORMAN, W.S. HARPOLE, T. DAUFRESNE et T. YOSHIDA (2005). Recent advances in ecological stoichiometry: insights for population and community ecology. Oikos, 109, 29-39.
- MÜLLER-NAVARRA D.C., M.T. BRETT, S. PARK, S. CHANDRA, A.P. BALLANTYNE, E. ZORITA et C.R. GOLDMAN (2004). Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature, 427, 69-72.
- OKSANEN L. et T. OKSANEN (2000). The logic and realism of the hypothesis of exploitation ecosystems. Am. Nat., 155, 703-723.
- PAINE R.T. (1988). Food webs: Road maps of interactions or grist for theoretical development? Ecology, 69, 1648-1654.
- PERSSON L. (1999). Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos, 85, 385-397.
- PERSSON L., P. BYSTRÖM, E. WAHLSTRÖM et E. WESTMAN (2004). Trophic dynamics in a whole lake experiment: size-structured interactions and recruitment variation. Oikos, 106, 263-274.
- PETCHEY O.L et K.J. GASTON (2002). Functional diversity (FD), species richness and community composition. Ecol. Lett., 5, 402-411.
- PINEL-ALLOUL B., A. MAZUMDER, G. LACROIX et X. LAZZARO (1998). Les réseaux trophiques lacustres: structure, fonctionnement, interactions et variations spatio-temporelles. Rev. Sci. Eau, 11, 163-197.
- POST D.M. (2002a). Using stable isotopes to estimate trophic position. Ecology, 83, 703-718.
- POST D.M. (2002b). The long and short of food-chain length. TREE, 17, 269-277.
- PROULX S.R., D.E.L. PROMISLOW et P.C. PHILLIPS (2005). Network thinking in ecology and evolution. TREE, 20, 345-353.
- PUCCIA C.J. et R. LEVINS (1985). Qualitative modeling of complex system. An introduction to loop analysis and time averaging. Harvard University Press, Cambridge, Mass.
- REYNOLDS C.S. (1997). Vegetation processes in the pelagic: a model for ecosystem theory. Dans : Excellence in Ecology, Book 9. International Ecology Institute, KINNE O. (Éditeur.), Oldendorf/Luhe, 371 p.
- RONDEL C., R. ARFI, D. CORBIN, F. LE BIHAN, E.H. NDOUR et X. LAZZARO (2008). A cyanobacterial bloom prevents fish trophic cascades. Freshwater Biol., 53, 637-651.
- ROOZEN F.C.J.M., M. LÜRLING, H. VLEK, EA.J. VAN DER POUW KRAAN, B.W. IBELINGS et M. SCHEFFER (2007). Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes. Freshwater Biol., 52, 977-987.
- SANDERS R.W., C.E. WILLIAMSON, P.L. STUTZMAN, R.E. MOELLER, C.E. GOULDEN et R. AOKI-GOLDSMITH (1996). Reproductive success of “herbivorous” zooplankton fed algal and nonalgal food resources. Limnol. Oceanogr., 41, 1295-1305.
- SCHADE J.D., J.F. ESPELETA, C.A. KLAUSMEIER, M.E. MCGRODDY, S.A. THOMAS et L. ZHANG (2005). A conceptual framework for ecosystem stoichiometry: balancing resource supply and demand. Oikos, 109, 40‑51.
- SCHEFFER M. (1998). Ecology of shallow lakes. Population and community biology Series 22. USHER M.B., D.L. De ANGELIS et B.F.J. MANLY (Éditeurs), Kluwer Academic Publishers, Pays-Bas, 357 p.
- SCHEFFER M. et S.R. CARPENTER (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. TREE, 18, 648-656.
- SCHEFFER M., S. CARPENTER, J.A. FOLEY, C. FOLKE et B. WALKERK (2001). Catastrophic shifts in ecosystems. Nature, 413, 591-596.
- SCHEFFER M. et E. JEPPESEN (2007). Regime shifts in shallow lakes. Ecosystems, 10, 1-3.
- SCHINDLER D.W. (1998). Replication versus realism: the need for ecosystem-scale experiments. Ecosystems, 1, 323‑334.
- SCHINDLER D.E., S.R. CARPENTER, J.J. COLE, J.F. KITCHELL et M.L. PACE (1997). Influence of food-web structure on carbon exchange between lakes and the atmosphere. Science, 277, 248-251.
- SCHMIDTKE A., E.M. BELL et G. WEITHOFF (2006). Potential grazing impact of the mixotrophic flagellate Ochromonas sp. (Chrysophyceae) on bacteria in an extremely acidic lake. J. Plankton Res., 28, 991-1001.
- SCHMITZ O.J., P.A. HAMBÄCK et A.P. BECKERMAN (2000). Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am. Nat., 155, 141-153.
- SHORMANN D.E. et J.B. COTNER (1997). The effects of benthivorous smallmouth buffalo (Ictiobus bubalus) on water quality and nutrient cycling in a shallow floodplain lake. Lake Reserv. Manage., 13, 270-278.
- SHURIN J.B., E.T. BORER, E.W. SEABLOOM, K. ANDERSON, C.A. BLANCHETTE, B. BROITMAN, S.D. COOPER et B.S. HALPERN (2002). A cross-ecosystem comparison of the strength of trophic cascades. Ecol. Lett., 5, 785-791.
- SIME-NGANDO T., Y. BETTAREL, C. CHARTOGNE et K. SEAN (2003). The imprint of wild viruses on freshwater microbial ecology. Recent Res. Dev. Microbiol., 7, 481-497.
- SINCLAIR A.R.E., S. MDUMA et J.S. BRASHARES (2003). Patterns of predation in a diverse predator–prey system. Nature, 425, 288-290.
- SOMMER U., F. SOMMER, B. SANTER, E. ZÖLLNER, K. JÜRGENS, C. JAMIESON, M. BOERSMA et K. GOCKE (200)3. Daphniaversus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia, 135, 639-647.
- STEINER C.F. (2001). The effects of prey heterogeneity and consumer identity on the limitation of trophic-level biomass. Ecology, 82, 2495-2506.
- STERNER R.W. (1990). The ratio of nitrogen to phosphorus ressupplied by herbivores: zooplankton and the algal competitive arena. Am. Nat., 136, 209-229.
- STERNER R.W. et J.J. ELSER (2002). Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, NJ, États-Unis.
- STIEF P. et F. HÖLKER (2006). Trait-mediated indirect effects of predatory fish on microbial mineralization in aquatic sediments. Ecology, 87, 3152-3159.
- STRONG D.R. (1992). Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology, 73, 747-754.
- THOUVENOT A., D. DEBROAS, M. RICHARDOT et J. DEVAUX (1999). Impact of natural metazooplankton assemblage on planktonic microbial communities in a newly flooded reservoir. J Plankton Res., 21, 179-199.
- VADEBONCOEUR Y., E. JEPPESEN, M.J. VANDER ZANDEN, H.-H. SCHIERUP, K. CHRISTOFFERSEN et D.M. LODGE (2003). From greenland to green lakes: cultural eutrophication and the loss of benthic energy pathways in lakes. Limnol. Oceanogr., 48, 1408-1418.
- VADEBONCOEUR Y., K.S. MCCANN, M.J. VANDER ZANDEN et J.B. RASMUSSEN (2005). Effects of multi-chain omnivory on the strength of trophic control in lakes. Ecosystems, 8, 682-693.
- VADEBONCOEUR Y., M.J. VANDER ZANDEN et D.M. LODGE (2002). Putting the lake back together: reintegrating benthic pathways into lake food web models. Bioscience, 52, 44-55.
- VAZQUEZ D.P., W.F. MORRIS et P. JORDANO (2005). Interaction frequency as a surrogate for the total effect of animal mutualists on plants. Ecol. Lett., 8, 1088-1094.
- WILLIAMS R.J. et N.D. MARTINEZ (2000). Simple rules yield complex food webs. Nature, 404, 180-183.
- WOODWARD G., B. EBENMAN, M. EMMERSON, J.M. MONTOYA, J.M. OLESEN, A. VALIDO et P.H. WARREN (2005a). Body size in ecological networks. TREE, 20, 402-409.
- WOODWARD G., D.C. SPEIRS et A.G. HILDREW (2005b). Quantification and resolution of a complex, size-structured food web. Adv. Ecol. Res., 36, 85-135.
- WOOTTON J.T. et M. EMMERSON (2005). Measurement of interaction strength in nature. Annu. Rev. Ecol. Evol. Syst., 36, 419-444.
- ZÖLLNER E., B. SANTER, M. BOERSMA, H.-G. HOPPE et K. JÜRGENS (2003). Cascading predation effects of Daphnia and copepods on microbial food web components. Freshwater Biol., 48, 2174-2193.