Abstracts
Résumé
Le traitement à la pression atmosphérique de solutions aqueuses d’urée et de thiourée par plasma d’arc rampant en atmosphère d’air humide conduit à la dégradation totale de ces composés. Les cinétiques globales d’ordre nul ont des constantes voisines proches de 3•10‑6 s‑1. Le procédé met en jeu les espèces actives créées dans la décharge, les radicaux OH et NO, responsables des caractères chimiques principaux du plasma : oxydation du fait de la présence de OH (E°OH H2O = 2,85 V/ENH) et acidification, provenant de la formation d’acides nitreux et nitrique en solution. Ces résultats sont relatifs à des molécules modèles, mais suggèrent l’extension du procédé à la dégradation de molécules toxiques et d’effluents industriels soufrés.
Mots clés:
- Dépollution,
- thiourée,
- urée,
- solutions aqueuses,
- dégradation oxydante,
- décharge électrique,
- plasma nonthermique,
- pression atmosphérique
Abstract
Electric discharges in humid air (i.e., a gliding arc discharge at atmospheric pressure and quasi-ambient temperature) are considered in the context of evaluating new techniques for pollution abatement. An electric discharge in a gas under specific conditions gives rise to a plasma, which involves activated gas species with enhanced reactivity. The main chemical properties of a discharge in humid air are attributed to NO and OH radicals formed in the discharge, which are able to react with solutes at the plasma/liquid interface. These activated species are formed in advanced oxidation processes and are respectively responsible for acid and oxidizing effects in the target solution: NO gives rise to nitrous and nitric acids, and OH is strongly oxidising [E°(OH/H2O) = 2.85 V/NHE].
To examine the degradation power of the plasma treatment on molecules of the same family and to evaluate the ability of the gliding arc system to oxidize sulphur-containing solutes (2 x 10‑3 M) in batch conditions, aqueous urea and thiourea were selected as suitable target solutions. The solutes were completely degraded within 180‑200 minutes of treatment and the concentrations decreased linearly with increasing exposure times in the discharge. This trend accounts for overall zero-order kinetic schemes with the relevant rate constants of kurea = 5.28 x 10‑6 s‑1 and kthiourea = 2.03 x 10‑6 s‑1.
The evolution of solutes with time was followed by total organic carbon (TOC) measurements for urea, and by the conductometric titration of the sulphate ions formed in the case of thiourea. Spectrophotometric measurements of the treated solutions at the solute absorption peaks were found to be unsuitable for analysis purposes due to the formation of nitrite/nitrate ions which absorb in the same wavelength range.
The extension of a gliding arc system from the laboratory level to an industrial scale for pollution abatement of industrial effluents is considered.
Keywords:
- Non thermal plasma,
- oxidation,
- gliding arc discharge,
- humid air plasma,
- thiourea,
- urea,
- pollution abatement
Appendices
Références bibliographiques
- ABDELMALEK F. (2003). Plasmachimie des solutions aqueuses. Application à la dégradation de composés toxiques. Thèse de Doctorat, Univ. Mostaganem, Algérie, 217 p.
- ABDELMALEK F., S. GHARBI, B. BENSTAALI, A. ADDOU et J.-L. BRISSET (2004). Plasmachemical degradation of azo dyes by humid air plasma: yellow supranol 4GL, scarlet nylosan F3GL and industrial waste. Water Res., 38, 2339-2347.
- BENSTAALI B., D. MOUSSA, A. ADDOU et J.-L. BRISSET (1998). Plasma treatment of aqueous solutes: some chemical properties of a gliding arc in humid air. Eur. Phys. J. AP, 4, 171-179.
- BENSTAALI B., P. BOUBERT, B.G. CHERON, A. ADDOU et J.-L. BRISSET (2002). Density and rotational temperatures measurements of the NO and OH radicals produced by a gliding arc in humid air and their interaction with aqueous solutions. Plasma Chem. Plasma Process., 22, 553-571.
- BRETHES-DUPOUEY S., R. PEYROUS et B.HELD (2000). Removal of H2S in air by using gliding arc discharges. Eur. Phys. J. AP, 11, 43-58.
- BURLICA R., M. KIRKPATRICK, W.C. FINNEY, R.J. CLARK et B.R. LOCKE (2004). Organic dye removal from aqueous solution by glidarc discharges. J. Electrostat., 62, 309-321.
- CZERNICHOWSKI A. (1992). Gliding discharge reactor for H2S valorization or destruction. Dans : Non-thermal plasma techniques for pollution control. B.M. PENETRANTE et S.E. SCHULTHEIS (Éditeurs), NATO ASI Série G, Vol. 34, Partie B, pp. 371-387.
- CZERNICHOWSKI A., P. CZERNICHOWSKI et M. CZERNICHOWSKI (2003). Glid-arc assisted removal of diluted hydrogen sulfide and methyl mercaptan from air. 16th International Symposium on Plasma Chemistry,, Taormina, Italy, PoB5, p.741.
- DELAIR L. (2004). Caractérisation de sources plasma dédiées à la simulation de rentrées atmosphériques et au traitement de polluants : arc soufflé basse pression et décharge glissante. Thèse de Doctorat, Univ. Rouen, France, 185 p.
- DOUBLA A., F. ABDELMALEK, K. KHELIFA, A. ADDOU et J.-L. BRISSET (2003). Post-discharge plasmachemical oxidation of iron (II) complexes. J. Appl. Electrochem., 3, 73-77.
- FANMOE J., J.O. KAMGANG, D. MOUSSA et J.-L. BRISSET (2003). Application de l’arc glissant au traitement de solvants industriels : cas du 1,1,1 trichloroéthane. Phys. Chem. News, 14, 1-4.
- FRIDMAN A.A., A. PETROUSOV, J. CHAPELLE, J.M. CORMIER, A. CZERNICHOWSKI, H. LESUEUR et J. STEVEFELT (1994). Physical model of the gliding arc. J. Phys. III, 4, 1449-1465.
- HABER F. et J. WEISS (1934). The catalytic decomposition of hydrogen peroxide. Proc. Royal Soc., A 147, 332- 351.
- HNATIUC E. (2002). Procédés électriques de mesure et de traitement des polluants, Lavoisier Tec&Doc, Paris, 370 p.
- JANCA J. et A. MAXIMOV (1997). Oxidation processes in the liquid solutions by means of gliding arc at atmospheric pressure. Proc. XXIIIrd International Conference on Phenomena in Ionized Gases (ICPIG-XXIII), Toulouse, France, 17-22 juillet, I-256.
- JANCA J., S. KUZMIN, A. MAXIMOV, J. TITOVA et A. CZERNICHOWSKI (1999). Investigation of the chemical action of the gliding and point arcs between the metallic electrode and aqueous solution. Plasma Chem. Plasma Process., 19, 53-67.
- KOSSITSYN M., A. GUTSOL et A. FRIDMAN (2003). Generation and diagnostics of non equilibrium plasma in gliding arc discharge. Proc. 16th International Conference on Phenomena in Ionized Gases (ICPIG), Taormina, Italie, Po4.6, p. 231.
- LESUEUR H., A. CZERNICHOWSKI et J. CHAPELLE (1988). Dispositif de génération de plasma basse température par formation de décharges électriques glissantes. Brevet français, No 2639172.
- MOREAU M., N. ORANGE et J.-L. BRISSET (2005). Application of electric discharges at atmospheric pressure to bio-decontamination. Ozone Sci. Eng., 27, 469-473.
- MOUSSA D., J.-L. BRISSET et S. BARGUES (1998). Procédé et dispositif de destruction de produits liquides par plasma froid. Brevet français, N° 98-13439.
- MOUSSA D. et J.-L. BRISSET (2003). Disposal of spent tributylphosphate by gliding arc plasma. J. Hazardous Mater., B102, 189-200.