Abstracts
Résumé
Le chitosane est une substance biodégradable d’origine naturelle obtenue par la désacétylation de la chitine, qui se trouve dans l’exosquelette des crustacés. Une de leurs applications plus récentes est le traitement des eaux. Pour favoriser l’utilisation du chitosane des exosquelettes de crustacés (crevettes, crabes, etc.) dans le traitement des eaux usées, les procédés de transformation du chitosane ont été simplifiés et optimisés. Dans la présente étude, les crustacés de crevette grise (Palaemodiae) ont été utilisés pour extraire le chitosane. Les expériences ont porté sur les effets des interactions de la concentration de la solution alcaline, du temps et de la température de réaction sur le degré de désacétylation. En plus de simplifier le processus de transformation de trois à deux étapes, les résultats montrent l’influence de la concentration d’hydroxyde de sodium (7,5‑ 12,5 M), du temps de réaction (30 ‑ 180 min) et de la température (80 ‑ 120 oC) sur le degré de désacétylation. La méthode de la spectroscopie infrarouge en film mince a été utilisée pour analyser le degré de désacétylation du chitosane. Un degré de désacétylation de 90 % a été atteint avec une concentration de la solution alcaline de 12,5 M, un temps de réaction de 120 min et une température de 110 oC. Par ailleurs, en réduisant le nombre d’étapes de transformation et la consommation de réactifs, le procédé développé est plus économique et a une meilleure performance environnementale.
Mots clés:
- Exosquelettes/carapaces de crevettes,
- Chitosane,
- N-désacétylation,
- Chitine,
- Hydrothermo-chimique,
- Valorisation
Summary
Chitosan is a natural biodegradable biopolymer produced from chitin, a polysaccharide derived from the shells of shrimp, crab and lobster. The development of commercial applications of chitin and chitosan in different fields such as biomedicine, nutrition, food processing, agriculture, cosmetics, and wastewater treatment has rapidly expanded in recent years. This paper investigates the hydrothermal production of chitosan from the carapace of gray shrimp (Palaemodiae) for use as a coagulant in wastewater treatment.
To obtain chitosan from shrimp exoskeletons, they were treated following two different steps. The first step was the demineralization of the shrimp’s exoskeleton, where calcium was removed using dilute HCl. The second deacetylation step completely dissolved the shrimp exoskeleton using a NaOH solution. In both steps, the ratio between solution digestive and exoskeleton was studied (1:10 (w:v)). For the demineralization process, the concentration of HCl was varied from 0.5 to 3.5 M in 0.5 M intervals at constant temperatures of 25oC and 50oC. The comparison of the results using these two temperatures indicated that the most favourable demineralization occurred after 6 h at 25oC and after 2 h at 50oC at a HCl concentration of 2 M. In this case, it was not necessary to use a HCl concentration greater than 2 M due to the fixed reaction time. When the HCl solution was heated, the reaction time of the demineralization process was reduced by a factor of three compared to that when room temperature HCl was used under the same conditions. Moreover, this reaction followed a pseudo-second-order equation with approximate rate constant of 2.38 L g‑1 min‑1 at 25oC in 1.5 M HCl.
The effectiveness of the transformation to chitosan depends on the interaction among the sodium hydroxide concentration, the reaction time and the temperature at which the deacetylation process occurs. The influence of the concentration of the alkaline solution, the reaction temperature, and the reaction time on the degree of deacetylation (DD) was investigated. The DD obtained was quantitatively analyzed by thin film infrared spectroscopy (IR). Film thickness was measured by using a micrometer with the smallest possible unit measurement count of 0.01 mm. First, exoskeletons were exposed to NaOH concentrations of 7.5 M, 10 M and 12.5 M for 60 min at various temperatures ranging from 60oC to 120oC at intervals of 20oC. Second, the reaction time was changed from 30 to 180 min at 100oC at 30 min intervals using the same NaOH concentrations previously mentioned. The results show that the factors that influence the DD values were the reaction temperature and the concentration of NaOH. However, based on these experiments, the concentration of NaOH influences the DD values the most. The DD values of chitosan production began to reach a constant level when the reaction temperature was greater than 100oC. As a result, after one hour at 110oC, chitosan production was obtained with different DD values of 60%, 67%, and 78% at NaOH concentrations of 10 M, 11.25 M and 12.5 M respectively. Nevertheless, chitosan could not be formed at 7.5 M NaOH, even though the reaction time was 3 h. Furthermore, when the reaction time was longer than 120 min, the DD values of chitosan increased slowly.
Therefore, the optimum conditions required for the deacetylation production of chitosan from gray shrimp carapace (DD of 90%), to be applied in wastewater treatment, are as follows: the exoskeleton should be exposed to a solution of 12.5 M NaOH (45%) for 2 h at 110oC. This product is generally termed chitosan when it has greater than 65% of the acetylic groups removed.
By diminishing the number of steps and reducing the chemical reagents needed, this study demonstrates the economical and environmental advantages of using chitosan as a coagulant to treat wastewater.
Key words:
- Shrimp exoskeleton,
- Carapace,
- Chitosan,
- N-deacetylation,
- Chitin,
- Hydrothermal-chemistry,
- Valorization
Appendices
Références bibliographiques
- AIBA S., M. IZUME, N. MINOURA et Y. FUJIWARA (1985). Studies on chitin – preparation and properties of chitin membranes. Carbohydr. Polym., 5, 285-295.
- APHA, AWWA et WEF (1995). Standard methods for examination of water and wastewater. 19th Edition. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, D.C., États-Unis.
- BAXTER A., M. DILLON et K.D. ANTHONY TAYLOR (1992). Improved method for I.R. determination of the degree of N-acetylation of chitosan. Int. J. Biol. Macromol., 14, 166-169.
- BLAIR H.S., J. GUTHRIE, T. LAW et P. TURKINGTON (1989). Chitosan and modified chitosan membranes I. Preparation and characterisation. J. Appl. Polym. Sci. 33, 641-656.
- BRINE C.J., P.A. SANDFORD et J.P. ZIKAKIS (1992). Advances in chitin and chitosan. Elsevier, Londres, Angleterre.
- CHANG K.L.B., G. TSAI, J. LEE et W.R. FU (1997). Heterogeneous N-deacetylation of chitin in alkaline solution. Carbohydr. Res., 303, 327-332.
- CHATTERJEE S., M. ADHYA, A.K. GUHA et B.P. CHATTERJEE (2005). Chitosan from Mucor rouxii: Production and physico-chemical characterization. Proc. Biochem., 40, 395-400.
- CHEN L., D. CHEN et C. WU (2003). A new approach for the floculation mechanism of chitosan. J. Polym. Env., 11, 89-92.
- CHEN C.H., F.Y WANG et Z.P. OU (2004). Deacetylation of β-chitin. I. Influence of the deacetylation conditions. J. Appl. Polym. Sci., 93, 2416-2422.
- CUROTTO E. et F. AROS (1993). Quantitative determination of chitosan and the percentage of free amino groups. Anal. Biol., 211, 240-241.
- COUGHLIN R.W., M.R. DESHAIES et E.M. DAVIS (1990). Chitosan in crab shell wastes purifies electroplating wastewater. Environ. Prog., 9, 35-40.
- DAUTZENBERG H., W. JEAGER, J. KOTZ, B. PHILLIPP, C. SEIDEL et D. STSCHEERBINA (1994). Polyelectrolyte, formation, characterization and application. Hanser, New York, N.Y., États-Unis.
- FENTON D.M. et D.E. EVELEIGH (1981). Purification and mode of action of a chitosanase from Penicillium islandicum. J. Gen. Microbiol., 126, 151-165.
- FREHAUT G. (2002). Un procédé “propre” de production du chitosane. Bulletin Électronique (BE) Allemagne, 121 p.
- GASTON C. (1983). Les réactions chimiques en solution aqueuse et caractérisation des ions. Masson, Paris, France.
- GOOSEN M.F.A. (1997). Applications of chitin and chitosan. Technomic, Lancaster, PA, États-Unis.
- HIRANO S. (1989). Chitin and chitosan. Elsevier, New York, NY, États-Unis.
- HIRANO S. (1996). Chitin biotechnology applications. Biotechnol. Annu. Rev., 2, 237-258.
- HIRANO S. (1999). Chitin and chitosan as novel biotechnological. Polym. Int., 48, 732-734.
- JUANG R.S. et R.C. SHIAU (2000). Metal removal from aqueous solutions using chitosan-enhanced membrane filtration. J. Membr. Sci., 165, 159-167.
- KHAN T.A., K.K. PEH et S.C. HUNG (2002). Reporting degree of deacetylarion values of chitosan: The influence of analytical methods. J. Pharm. Sci., 5, 205‑212.
- KIM T.Y., K.J. KIM, H. MOON et J.H. YANG (1999). Adsorption of cupric ions on chitosan. J. Korean Ind. Eng. Chem., 10, 268- 274.
- METHACANON P., M. PRASITSILP, T. POTHSREE et J. PATTARAARCHACHAI (2003). Heterogeneous N-deacetylation of squid chitin in alkaline solution. Carbohydr. Polym., 52, 119-123.
- MOORE G.H. et G.A.F. ROBERTS (1980). Determination of the degree of N-acetylation of chitosan. Int. J. Biol. Macromol., 2, 115-116.
- MURCOTTE S. et D.R.F. HARLEMAN (1993a). The efficacy of chitosan and other natural polymers in removing COD, TSS, heavy metals and PAHs from municipal wastewater. Sea Grant College Program Massachusetts Institute of Technology, Project No. RT-1, Cambridge, MA, États-Unis, 71 p.
- MURCOTTE S. et D.R.F. HARLEMAN (1993b). Mit jar test of Massachusetts reservoir water using the natural polymer chitosan with bentonite. Sea Grant College Program Massachusetts Institute of Technology, Project No. 92-A-5, Cambridge, MA, États-Unis, 47 p.
- MUZZARELLI R.A.A. (1977). Chitin. 1re Édition, Pergamon Press, Oxford, Angleterre.
- MUZZARELLI R.A.A. et R. ROCHETTI (1985). Determination of degree of acetylation of chitosan by first derivative ultraviolet spectrophotometry. Carbohydr. Polym., 5, 461-472.
- MUZZARELLI R.A.A. (1996). Chitosane-based dietary foods. Carbohydr. Polym., 29, 309-316.
- NIOLA F. (1991). Étude de la réaction de désacétylation de la chitine par le procédé thermo-mécano-chimique. Mémoire de maîtrise, Université de Sherbrooke, Sherbrooke, QC, Canada, 128 p.
- NIEDERHOFER A. et B.W. MÜLLER (2004). A method for direct preparation of chitosan with low molecular weight from fungi. Eur J. Pharm. Biopharm., 57, 101-105.
- NO H.K, Y.I. CHO, H.R. KIM et S.P. MEYERS (2000). Effective deacetylation of chitin under conditions of 15 psi/121oC. J. Agric. Food Chem., 48, 2625-2627.
- NWE N. et W.F. STEVENS (2002). Production of fungal chitosane by solid substrate fermentation followed by enzymatic extraction. Biotechnol. Lett., 24, 131-134.
- OKAFOR N. (1965). Isolation of chitin from the shell of the cuttle fish, Specia officinalis l. Mucoproteins and mucopolysaccharides. Biochim. Biophys. Acta, 101, 193‑200.
- PELLETIER A., I. LEMIRE, J. SYGUSH, E. CHORNET et R.P. OVEREND (1990). Chitin/chitosan transformation by thermo-mechano-chemical treatment including characterisation by enzymatic depolymerisation. Biotechnol. Bioeng., 36, 310-315.
- PELLETIER A. (1991). Valorisation de la chitine par sa transformation en produits chitine/chitosane variés grâce à des procédés thermo-mécano-chimiques et enzymatiques. Thèse de Doctorat, Université de Sherbrooke, Sherbrooke, QC, Canada, 160 p.
- PLONSKI B.A., H.V. LUONG et E.J. BROWN (1990). Arsenic sorption by chitosan and chitin deacetylase production by Mucor ruoxii. Biorecovery, 1, 239-253.
- ROBERTS G.A.F. (1992). Chitin chemistry. MacMillan Press, Londres, Angleterre.
- TOKURA S. et N. NISHI (1994). Specification and characterization of chitin and chitosan. Asian-Pacific chitin and chitosan symposium, Bangi, Malaysie, pp. 67-86.
- WANG T., M. TURHAN et S. GUNASEKARAN (2004). Selected properties of pH-sensitive, biodegradable chitosan-poly(vinyl alcohol) hydrogel. Polym. Int., 53, 911-918.
- WU A.C.M. (1988). Determination of molecular-weight distribution of chitosan by high-performance liquid chromatography. Meth. Enzymol., 161, 447-452.