Abstracts
Résumé
La qualité des eaux de surface est sujette à de nombreuses fluctuations et par conséquence les gestionnaires sont souvent confrontés à des pics de pollution problématiques. À cet effet, nous présentons dans cette étude les résultats d’une exploration des séries d’analyses de la qualité des eaux de surface dans le bassin de la Tafna (Algérie). Nous avons retenu trois descripteurs de la qualité des eaux; la matière en suspension (MES), la conductivité et la demande chimique en oxygène (DCO). On dispose pour cette étude de séries de prélèvements instantanés d’une fréquence au moins mensuelle, couvrant une période de sept ans (avril 1995-mars 2002). Les stations de prélèvements choisies se situent sur les principaux cours d’eau du bassin de la Tafna (Mouillah, Isser et Tafna) de manière à couvrir l’ensemble du bassin versant.
Afin d’aboutir à des conclusions exploitables, nous avons commencé, dans une première étape, par une vérification de la cohérence des résultats d’analyse, suivie d’une analyse conjointe de tous les paramètres pour explorer la structure globale des données et appréhender les principaux facteurs qui contrôlent l’évolution de la qualité physico-chimique des eaux.
Nous proposons dans cette étude deux modèles mathématiques prévisionnels : le premier est un modèle de simulation du comportement de la qualité des eaux basé sur les relations concentration-débit. Le second est une approche prédictive qui permet de mettre en évidence les saisonnalités et les tendances d’évolution des paramètres étudiés.
Mots Clés:
- eaux de surface,
- qualité,
- débit,
- MES,
- DCO,
- conductivité,
- pollution,
- séries chronologiques,
- analyse statistique,
- modélisation,
- comportement,
- prévision
Summary
A river is a complex system in interaction with the whole of its catchment area. River water acquires its physicochemical composition under the combined action of several factors: weathering of rocks, decomposition of terrestrial organic matter, diffuse and point-source pollution, and atmospheric precipitation.
The large catchment area of Tafna (7,245 km2 surface area), located at the extreme northwest sector of Algeria and extending into Moroccan territory (23%), is subdivided into four sub-basins. However, the downstream portion of the basin, which represents the sub-basin of maritime Tafna, was not retained in this study; its principal river Tafna is often dry because several hydraulic constructions have been installed in the upstream part of the basin. The three sub-basins concerned then with this study are the upper Tafna, the Mouillah and the Isser.
In the basin of Tafna, surface water quality is being continually degraded. In addition to the phenomenon of erosion, which has been estimated to be 400 t/km2/year in the Mouillah sub-basin and 1,000 t/km2/year in the Isser and upper Tafna sub-basins, domestic and industrial wastes increasingly threaten the quality of the surface water.
The basin of Tafna has a surface water quality network composed of 41 sampling stations. Three stations have been selected for this study. They are distributed in the three sub-basins studied, and are located upstream of dams, so as to cover the whole of the basin: Station ST160202 in the Mouillah sub-basin, ST160426 in the upper Tafna sub-basin and ST160614 in the Isser sub-basin. This work presents the results of an exploration of a series of instantaneous samples collected with at least monthly frequency over a period of seven years (April 1995-March 2002). The descriptors used in this study are the total concentrations: suspended matter concentration (SS), conductivity, which expresses the dissolved matter concentration, and the organic matter concentration as estimated with the chemical oxygen demand (COD).
To be able to interpret the influence of the characteristics of the catchment area on the physicochemical quality of surface water, we started by describing the principal characteristics of the sub-basins studied. Given the great variability of the results of the analysis, we considered it to be useful and necessary to evaluate the coherence of the measurements with ion balance and statistical analysis (Box and Whisker plots). A joint analysis of all parameters was then applied to explore the total structure of the data in order to understand the principal factors that control the evolution of the physicochemical water quality.
This study proposes two models. The first model is a simulation of the behaviour of surface water quality based on concentration-flow relations. The second is a predictive approach that makes it possible to highlight the seasonal effects and the temporal trends of the studied parameters.
Based on this modelling, it appears that the concentration variance explained by the concentration-flow models varies between 50% and 72%, which means that the reconstitution of the concentrations is only approximate. To improve the reliability of these models, we propose several solutions.
As for the forecasting models, a comparison of the values calculated to those measured shows that the results for conductivity and the COD are close to the measured values, with average relative variations of the order of 15%, but the forecasts of SS are considered to be less precise because they produce greater average relative variations. This is explained by the fact that the suspended matter concentrations do not follow a seasonal trend but are strongly related to flow variations.
Finally, it should be noted that the reliability of the established models remains very sensitive to the size of the measurement series one has. Better information contained in longer series of analyses would undoubtedly make it possible to reduce this uncertainty.
The methodology has been suggested on a purely exploratory basis and was limited to the three descriptors of the surface water quality: SS, conductivity and COD. The work will be extended by applying it to other parameters, which should make it possible to establish a complete model for the behaviour of surface water quality in the catchment area of the Tafna.
Key Words:
- surface water,
- water quality,
- flow,
- suspended solids,
- COD,
- conductivity,
- pollution,
- time series,
- statistical analysis,
- modelling,
- forecast
Article body
1. Introduction
La qualité des eaux d’un cours d’eau est définie, à un instant donné, par l’intermédiaire d’un certain nombre de paramètres physico-chimiques. Cependant, quand on veut définir les tendances d’évolution de cette qualité et mettre en place par conséquent des interventions éventuelles, on est amené à analyser des séries chronologiques en utilisant des méthodes statistiques simples et objectives.
L’étude de la qualité des eaux de la Moselle (France), effectuée par GUILBOT et al. (1986) avec des séries chronologiques d’analyse sur la période (1971-1980), a illustré la pertinence des méthodes statistiques des cumuls et des écarts cumulés dans la détermination des hétérogénéités et des tendances d’évolution. Les travaux de DADI (1991) et PENVERNE (1983) illustrent l’efficacité des méthodes d’analyse multidimensionnelle telles que l’analyse en composantes principales (ACP) dans l’exploration des séries d’analyse de l’eau.
D’après les études de MEYBECK (1984), une eau de rivière acquiert sa composition physico-chimique sous l’action combinée de plusieurs facteurs : altération des roches, décomposition de la matière organique des sols, pollutions diffuse et ponctuelle et précipitations atmosphériques.
Le bassin de la Tafna est considéré comme le château d’eau de toute la région Ouest de l’Algérie. Plusieurs barrages y ont été réalisés mais la qualité de ses eaux superficielles ne cesse de se dégrader ces dernières décennies. En plus du phénomène d’érosion que l’on estime d’après GHENIM (2001) à 400 t/km2/an dans le sous-bassin de Mouillah et à 1 000 t/km2/an dans les sous-bassins d’Isser et de la haute Tafna, les rejets domestiques et industriels menacent de plus en plus la qualité des eaux de surface dans ce bassin.
Le présent travail se propose donc de présenter les résultats d’une analyse exploratoire de séries de prélèvements couvrant une période de sept ans (avril 1995-mars 2002). Afin d’aboutir à des conclusions exploitables, nous avons évalué tout d’abord la cohérence des mesures en utilisant la balance ionique et les représentations graphiques de « Box & Whisker ». Nous avons analysé ensuite la structure globale des mesures en utilisant l’ACP pour appréhender les principaux facteurs qui contrôlent l’évolution de la qualité physico-chimique des eaux. Nous proposons enfin deux types de modèle de simulation du comportement de la qualité des eaux. Le premier modèle est basé sur les relations concentration-débit. Le second modèle comprend une approche prédictive qui permet de mettre en évidence les saisonnalités et les tendances d’évolution des paramètres étudiés.
2. Site d’étude
L’ensemble du grand bassin versant de la Tafna d’une superficie de 7 245 km2, situé à l’extrême Nord‑Ouest de l’Algérie et qui s’étend jusqu’au territoire marocain (23 %), se subdivise en quatre sous-bassins. Néanmoins, sa partie en aval, qui représente le sous-bassin de la Tafna maritime, n’a pas été retenue dans cette étude car son cours d’eau principal, oued Tafna, est souvent à sec à cause de la mise en place en amont de plusieurs ouvrages hydrauliques. Les trois sous-bassins concernés alors par cette étude sont le sous-bassin de la haute Tafna, le sous-bassin de Mouillah et le sous-bassin d’Isser.
Une description sommaire des trois sous-bassins est présentée dans le tableau 1. Ceci nous permettra par la suite d’interpréter l’influence de certaines caractéristiques du bassin versant sur la qualité physico-chimique des eaux de surface.
Tableau 1
Caractéristiques des sous-bassins de la Tafna.
Characteristics of the sub-basins of the Tafna.
Sous Bassin |
Cours d’eau |
Surface (km2) |
Pentes I (%) |
Couvert végétal dégradé ou mort (%) |
---|---|---|---|---|
HauteTafna |
Tafna |
255,5 |
I>25 % dans 49 % de la surface |
43,7 % |
Isser |
Isser |
1139,7 |
I>30 % dans 32 % de la surface |
39,3 % |
Mouillah |
Mouillah |
2650 |
I<5 % dans 50 % de la surface |
49,4 % |
Le bassin de la Tafna est constitué essentiellement par une zone montagneuse dans le sud du bassin de la haute Tafna formée par des affleurements calcaires très karstiques. Dans le reste du bassin, il s’agit de plaines et de plateaux constitués de dépôts alluvionnaires de marnes sableuses et d’argiles.
La pollution d’oued Isser et d’oued Tafna est induite principalement par les rejets d’eaux usées domestiques. En revanche, en ce qui concerne oued Mouillah, et après la mise en place d’une station d’épuration (Maghnia), la pollution reste causée surtout par les rejets de quatre unités industrielles, ENOF (entreprise de bentonite : 600 m3/j), ENCG (entreprise de corps gras : 528 m3/j), ERIAD (maïserie : 1 600 m3/j) et CERTAF (céramique : 130 m3/j).
3. Traitement des données
Le bassin de la Tafna dispose d’un réseau de surveillance de la qualité des eaux de surface composé de 41 stations de prélèvement. Pour cette étude, trois stations ont été choisies. Elles sont réparties sur les trois sous-bassins étudiés, et situées à l’amont de grands barrages, de manière à couvrir l’ensemble du bassin. La station ST160202 au niveau du sous-bassin de Mouillah, ST160426 au niveau du sous-bassin de la haute Tafna et ST160614 au niveau du sous-bassin d’Isser.
Nous avons retenu dans cette étude trois descripteurs de la qualité des eaux qui correspondent aux concentrations globales : la concentration en matière en suspension (MES), la concentration en matière dissoute (conductivité) et la concentration en matière organique (DCO). Les séries d’analyses étudiées couvrent une période de sept ans allant d’avril 1995 à mars 2002.
Devant la grande variabilité des résultats d’analyses de la conductivité, illustrée par le tableau 2, nous avons commencé, dans une première étape, par une vérification de la balance ionique des ions majeurs. L’analyse est estimée fiable si l’erreur sur la balance ionique ne dépasse pas 5 % (Figure 1).
Tableau 2
Variabilité de la composition physico-chimique des eaux (avril 1995-mars 2002).
Variability of physicochemical water quality (April 1995-March 2002).
Paramètres |
Station 160426 |
Station 160202 |
Station 160614 |
|||
---|---|---|---|---|---|---|
Min |
Max |
Min |
Max |
Min |
Max |
|
T °C |
9 |
21 |
7,9 |
30 |
8,3 |
26,5 |
pH |
7,4 |
8,8 |
6,5 |
8,9 |
7,3 |
9,1 |
O2 (mg/L) |
3,6 |
10,1 |
0 |
7,5 |
5,7 |
13,5 |
MES (g/L) |
0,02 |
33,2 |
0,01 |
77,9 |
0,01 |
102,6 |
Cond.(µS/cm) |
361 |
1960 |
375 |
3300 |
496 |
2870 |
Ca2+(mg/L) |
25 |
130 |
43 |
251 |
40 |
165 |
Mg2+(mg/L) |
15 |
109 |
17 |
134 |
14 |
114 |
Na+(mg/L) |
18 |
159 |
7 |
449 |
35 |
391 |
K+(mg/L) |
2 |
35 |
2 |
47 |
2 |
16 |
Cl-(mg/L) |
48 |
363 |
33 |
763 |
41 |
694 |
SO42-(mg/L) |
34 |
252 |
6 |
336 |
38 |
278 |
HCO3-(mg/L) |
134 |
527 |
69 |
881 |
131 |
485 |
NO3-(mg/L) |
2 |
32 |
2 |
218 |
2 |
55 |
NH4+(mg/L) |
0,01 |
2,40 |
0,52 |
106,40 |
0 |
7,40 |
DCO(mg/L) |
10 |
80 |
60 |
400 |
10 |
290 |
DBO5 (mg/L) |
1,30 |
21 |
13,60 |
212 |
4,20 |
76,30 |
L’erreur sur la balance ionique des analyses effectuées au niveau de la station ST160426 oued Tafna oscille autour de la valeur admissible de 5 %. Les analyses sont donc jugées fiables. Par contre, concernant les deux autres stations, on remarque que la balance ionique n’est pas toujours équilibrée. À la station ST160202 oued Mouillah, l’erreur dépasse la valeur admissible dans sept mesures (soit 5 % des 140 analyses) et atteint une valeur maximale de 11,6 % dans le prélèvement du 27/03/00 où une forte valeur de la concentration en bicarbonates est détectée (HCO3- = 881 mg/L). Cependant, à la station ST160614 oued Isser, cinq analyses sont jugées erronées (soit 6,3 % des 79 analyses), l’erreur atteint 16,8 % dans le prélèvement du 28/02/1996. L’erreur est due à une valeur excessive de la concentration en calcium (Ca2+ = 165 mg/L).
Pour comparer ensuite les dispersions des valeurs des trois descripteurs dans les trois stations, nous avons utilisé les représentations graphiques de « Box et Whisker ». La figure 2 montre une grande variabilité de la conductivité et de la DCO à oued Mouillah; ceci reflète l’impact des rejets industriels à oued Mouillah. Les dispersions de ces paramètres, à oued Tafna et à oued Isser, sont plus faibles et presque similaires. Par contre, à la station ST160614 d’Isser, on observe une valeur douteuse de la DCO de l’ordre de 290 mg/L qui correspond au prélèvement du 19/11/01 et une valeur douteuse de la conductivité de l’ordre de 2 870 µS/cm correspondant au prélèvement du 13/03/98. Les valeurs douteuses représentent souvent des erreurs aléatoires qui influencent fortement les coefficients de corrélation. Le nombre de valeurs douteuses détectées étant faible, on a jugé qu’elles sont dues soit à un rejet accidentel ou tout simplement fausses et par conséquent ont été supprimées des séries. Quant à la concentration en matière en suspension (MES), l’étendue interquartile (25 %‑75 %) est très réduite, mais plusieurs valeurs extrêmes (douteuses) sont observées. Après vérification, nous avons constaté que toutes les valeurs extrêmes correspondent à des périodes de crues ou aux premières pluies d’automne. Ceci signifie que la concentration en matières en suspension est peu importante en période de basses eaux (20‑40 mg/L) et qu’elle devient très importante en automne et en période de crue. À la station ST160614 d’Isser, la concentration MES a atteint 102,7 g/L lors du prélèvement du 10/10/01. Ceci est dû à l’erodabilité relativement importante des sols dans le sous-bassin d’Isser.
Pour appréhender ensuite les principaux facteurs qui contrôlent l’évolution de la qualité physico-chimique des eaux, nous avons analysé globalement tous les paramètres en tenant compte de leur caractère multidimensionnel. Les travaux de DADI (1991) et PENVERNE (1983) illustrent la grande efficacité de l’analyse en composantes principales (ACP) dans le domaine de l’eau. Notons que, pour obtenir des corrélations cohérentes, issues du même ensemble d’observations (analyses), nous avons supprimé toute observation contenant au moins une valeur manquante des variables (paramètres) étudiées. L’ACP a alors été appliquée sur des tableaux de données composés de 17 variables, présentées dans le tableau 2, et plus de 138 observations réalisées durant la période d’étude (avril 1995-mars 2002). La figure 3 présente une projection de tous les paramètres sur le plan formé par les deux premiers axes principaux.
Cette représentation graphique met en évidence essentiellement le phénomène de dilution des sels minéraux par le débit, observé par plusieurs auteurs (DUPRAZ (1984), MEYBECK (1984), etc.), le débit et la conductivité étant opposés sur le premier axe. Sur cet axe on observe, d’une part, la conductivité et les ions dominants (Cl-, Mg2+, Na+), et, d’autre part, le débit et la concentration en matière en suspension.
Lorsqu’on examine l’alignement de toutes les mesures instantanées du débit, de la conductivité et de la concentration en matières en suspension, sur toute la période d’étude (avril 1995-mars 2002) et sur l’ensemble des trois stations, il convient de signaler pour la station de Tafna ST160426 et celle d’Isser ST160614 que la conductivité est plus basse au printemps et au début de l’été qu’en automne. Ceci s’explique par le fait que les sels dissous s’accumulent près de la surface du sol pendant les pluies hivernales et, après les orages d’été (juin), avant leur mise en solution à l’automne et la dilution hivernale. Ce phénomène est mis en évidence par les mesures effectuées par CLOSE-LECOCQ et al. (1985) dans la Meuse (France). Pour ce qui est d’oued Mouillah à la station ST160202 où la forte minéralisation est due essentiellement aux rejets industriels, il y a dilution pendant les forts débits. Cependant, la concentration en matières en suspension augmente avec le débit et elle ne devient importante qu’en période de crue où elle atteigne 102,7 g/L à la station d’Isser. Les concentrations les plus élevées sont enregistrées pendant l’automne. En effet, au cours de la saison d’été, caractérisée par une chaleur pouvant atteindre 38 °C et une pluviométrie négligeable de moins de 20 mm, le sol se dessèche et perd sa cohésion. Les pluies d’automne sur un sol fragilisé engendrent alors des concentrations en matières en suspension très importantes. En ce qui concerne la concentration en matière organique (DCO), on remarque de fortes valeurs en périodes de basses eaux et une dilution pendant les périodes de crues, ce qui indique que les cours d’eau du bassin de la Tafna sont fortement pollués par les rejets ponctuels.
4. Modélisation
Pour une gestion effective, ces mesures doivent être traduites en lois de comportement. La finalité des modèles proposés est la prédiction et la reconstitution des concentrations à partir de modèles fiables, représentatifs et spécifiques au bassin versant de la Tafna. À cet effet, nous avons mené l’analyse des variabilités des concentrations globales « C » successivement selon deux approches de modélisation :
L’utilisation des relations concentration-débit C = f (Q);
L’analyse des séries chronologiques C = f (t).
4.1- Modèle de simulation du comportement
Le comportement de la qualité des eaux est étudié à travers l’évolution des concentrations en fonction du débit. Lors des ajustements statistiques aux différentes lois de probabilité, nous avons constaté que la distribution du débit et des trois (03) descripteurs étudiés suit une loi log-normale (DLN). Une distribution similaire est observée par BERON et al. (1982) dans les eaux de surface de la région montréalaise (Canada) et DADI (1991) dans les eaux de la Moselle (France). Les coefficients de corrélation (r) ont donc été calculés entre les logarithmes des valeurs. Pour tenir compte des valeurs extrêmes, nous avons calculé ensuite un coefficient de corrélation non paramétrique de Spearman (R). L’examen des résultats de cette analyse fait apparaître une corrélation positive et significative du débit avec la MES (0,70 < r < 0,82; 0,61 < R < 0,70; p < 0,01). À l’opposé, la conductivité et la DCO sont corrélées négativement au débit (- 0,58 < r < - 0,69; - 0,50 < R < - 0,63; p < 0,05).
La recherche des relations significatives a abouti à une relation sous la forme d’une puissance du type : C = a Qb concernant l’évolution de MES et de la conductivité en fonction du débit. Ce type de modèle est confirmé dans plusieurs travaux (DUPRAZ, 1984; MEYBECK, 1984). La relation d’évolution de la DCO en fonction du débit la plus significative est une relation hyperbolique du type : C = c + d/Q. Cette relation a été mise en évidence dans les travaux de GUILBOT et al. (1986) relatifs aux mesures de DBO5 dans la Moselle sur six stations de prélèvements.
Les coefficients « a » et « c » traduisent l’importance des concentrations qui dépendent des caractéristiques naturelles et anthropiques propres à chaque sous-bassin. Ils sont nettement plus importants à Mouillah qu’au niveau des sous-bassins d’Isser et de la haute Tafna où ils sont proches (Figure 4).
Les coefficients « b » et « d » sont plus intéressants puisqu’ils expriment le degré de dépendance entre C et Q. La figure 4 illustre une comparaison des valeurs de ces coefficients entre les sous-bassins de la Tafna. Le coefficient « b » relatif à la MES permet d’établir un classement des trois sous-bassins selon leur susceptibilité à l’érosion. Il oscille entre 0,45 dans le sous-bassin de la haute Tafna et 0,80 dans le sous-bassin d’Isser. Les études récentes (BOUANANI, 2004; TERFOUS et al., 2001) montrent que les valeurs de b sont plus élevées en automne, avec des valeurs qui s’approchent de 1 dans le sous-bassin d’Isser. Ces résultats confirment la forte érodabilité du sous-bassin d’Isser liée à sa lithologie et à ses pentes élevées (Tableau 1).
Tableau 3
Résultats de la décomposition des séries chronologiques d’analyse de concentrations (Ct) au mois d’ordre t (l,.…, N).
Results of the analysis of the chronological series of concentrations (Ct) in the month of order t (l,…., N).
Station |
Paramètre |
Tendance |
Composantes saisonnières |
|||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Avril |
Mai |
Juin |
Juil. |
Août |
Sept. |
Oct. |
Nov. |
Déc. |
Janv. |
Fév. |
Mars |
|||
ST160426 |
Conductivité |
C=1066,1+5,3t |
2,80 |
‑138,07 |
131,60 |
196,22 |
290,92 |
‑154,1 |
‑170,40 |
‑29,43 |
‑68,01 |
‑94,00 |
15,4 |
17,0 |
ST160614 |
DCO |
C=37,40 |
‑9,40 |
‑5,30 |
‑8,02 |
‑2,36 |
‑3,87 |
‑2,20 |
5,3 |
5,82 |
7,00 |
11,30 |
9,40 |
‑7,75 |
Conductivité |
C=1250,00 |
22,50 |
‑140,1 |
479,40 |
618,04 |
110,65 |
‑224,1 |
‑271,0 |
‑215,63 |
‑118,9 |
‑157,3 |
‑18,2 |
‑85,4 |
|
ST160202 |
DCO |
C=56,10 |
‑1,36 |
‑0,45 |
7,40 |
‑0,93 |
7,08 |
2,21 |
4,68 |
‑8,05 |
‑10,70 |
‑6,38 |
1,73 |
4,75 |
Conductivité |
C=810,2+803,3 log(t) |
118,1 |
112,3 |
113,9 |
111,8 |
97,7 |
65,75 |
68,9 |
118,4 |
103,8 |
96,3 |
101 |
91,2 |
|
|
DCO |
C=136+28,1 log(t) |
117,7 |
111,7 |
103,3 |
80,1 |
102,2 |
71,4 |
100,8 |
69,1 |
98,23 |
101,6 |
128,9 |
114,9 |
Quant à la valeur du coefficient « b » concernant la conductivité, elle est négative variant de -0,07 à la haute Tafna et à environ -0,14 à Isser et Mouillah, expliquant ainsi la contribution de la nappe de Maghnia dans l’alimentation du cours d’eau de la Tafna pendant les périodes de basses eaux. Quant au coefficient « d » concernant la DCO, il représente un flux de matières organiques exprimé en grammes par seconde. Il est beaucoup plus important à Mouillah (d = 5,7 g/s) qu’à Isser et la haute Tafna où les valeurs de « d » sont très proches et nettement plus faibles (d = 0,1 g/s), ce qui indique que les rejets d’eaux usées domestiques et industriels sont beaucoup plus importants à oued Mouillah qu’aux oueds d’Isser et de Tafna.
4.2 Modèle de prévision
L’objectif est de déterminer d’éventuelles tendances d’évolution des concentrations. Les crues induisent des concentrations extrêmes en matière en suspension, ce qui implique des discontinuités brutales dans les séries qu’il n’est pas possible de prendre en compte dans une étude de séries chronologiques. Nous avons exploité alors les valeurs moyennes mensuelles des concentrations globales (MES, Conductivité, DCO).
Les valeurs d’une série chronologique sont considérées comme une superposition de trois composantes : la tendance Lt, une composante saisonnière St et des variations aléatoires zt. Nous proposons soit un modèle additif où Yt = Lt + St + zt, soit un modèle multiplicatif avec Yt = Lt·St·zt. Un lissage par la méthode des moyennes mobiles nous permet tout d’abord d’isoler la tendance Lt et en admettant par la suite qu’il y a compensation des aléas zt sur l’année, on peut déterminer une composante saisonnière St pour chaque mois (Tableau 3).
Aucun mouvement saisonnier ne caractérise l’évolution chronologique de la MES. La MES est plus ou moins constante (20 mg/L à 40 mg/L) caractérisée par des hystérésis (30 à 100 g/L). Alors aucun modèle saisonnier n’est applicable. À oued Isser et oued Tafna, les valeurs de la conductivité et de la concentration en matières organiques (DCO) oscillent autour de leurs moyennes respectives. Elles suivent un mouvement saisonnier d’amplitude plus ou moins constante; le modèle additif sans tendance semble mieux convenir à ces deux variables. En revanche, en ce qui concerne oued Mouillah, des fluctuations saisonnières de la conductivité et de la DCO semblent s’amplifier d’une année à l’autre avec une tendance croissante à seuil. Le modèle multiplicatif avec tendance à seuil apparaît donc le mieux adapté (Figure 5).
5. Validation des modèles
La variance des concentrations globales expliquée par les modèles concentration-débit varie de 50 % à 72 %. La reconstitution des concentrations n’est donc qu’approchée. Pour améliorer la fiabilité de ces modèles, de nombreuses solutions existent. D’après les travaux de FOSTER (1978), la prise en considération de certaines variables telles que la nature du sol, le déficit hydrique du sol, la température, l’évapotranspiration et les pollutions anthropiques de chaque sous-bassin pourrait améliorer cette variance. Des ajustements effectués par GHENIM (2001) sur des sous-groupes de données, sélectionnés en fonction des saisons, font apparaître des liaisons très fortes entre les concentrations en matières en suspension et les débits pendant l’automne. D’après les travaux de DUPRAZ (1984), des relations fonctionnelles plus significatives entre la concentration en matières en suspension et le débit au cours des crues isolées ont mis en évidence des concentrations différentes pour des débits égaux en montée de crue et en décrue. Dans le bassin de la Tafna nous avons remarqué que les concentrations sont plus élevées en montée de crue.
Quant aux modèles de prévision, seule une comparaison des concentrations prévues aux concentrations mesurées nous permet de juger de la fiabilité des modèles proposés. Il s’avère que concernant la conductivité et la DCO, les résultats sont proches des valeurs mesurées avec des écarts relatifs absolus moyens de l’ordre de 15 %. Quant à la MES, les modèles de prévisions sont jugés moins précis car ils produisent des écarts relatifs absolus moyens plus importants. Ceci s’explique par le fait que la concentration en matières en suspension est trop sensible aux variations des débits. D’après les travaux de GHENIM (2001), les crues sont à l’origine de 75 % de la charge en suspension dans le bassin de la Tafna.
6. Discusion et conclusion
En conclusion, cette approche, prédictive et appliquée, s’inscrit dans une perspective de gestion intégrée de la qualité des eaux de surface dans le bassin de la Tafna, et adaptée aux problèmes posés tels que les pics de pollution et la dégradation de la qualité des eaux. La combinaison des deux modèles proposés devrait contribuer à la compréhension des principaux facteurs qui contrôlent la qualité physico-chimique des eaux et à la prédiction d’une dégradation progressive de la qualité des eaux d’un cours d’eau. Au terme de cette exploration on peut dresser les interprétations suivantes :
L’augmentation du débit s’accompagne d’une diminution de la conductivité due essentiellement au phénomène de dilution. Les sels dissous s’accumulent à la surface du sol pendant les pluies hivernales, et surtout pendant les orages d’été (juin), avant leur mise en solution à l’automne et la dilution hivernale. L’alimentation des cours d’eau par les eaux souterraines accompagnée d’une forte évapotranspiration contribue aussi à l’augmentation de la minéralisation des eaux de surface pendant les périodes de basses eaux. Les études de DAHMANI et al. (2002) montrent que la conductivité à l’étiage est due essentiellement à une forte concentration en NaCl. Aucune tendance à long terme n’est observée concernant cette variable; ses valeurs semblent osciller autour de la moyenne, sauf pour le cas des eaux d’oued Mouillah où les rejets d’eaux usées industrielles amplifient son évolution.
En ce qui concerne la matière en suspension, il ressort que la MES est très importante pendant les crues (100 g/L), mais en revanche elle est faible en période de basses eaux (20 à 40 mg/L). Les concentrations les plus importantes sont enregistrées pendant l’automne. En effet, les pluies modérées d’automne sur un sol fragilisé par les conditions climatiques d’été (38 °C et 20 mm de pluie) engendrent une forte érosion mécanique. La variation chronologique de la MES est perturbée par des hystérésis observées pendant l’automne et les périodes de crue; aucun modèle saisonnier ne lui convient.
La concentration en matière organique DCO diminue avec le débit, ce qui indique que les eaux de surface dans le bassin de la Tafna sont fortement polluées par les rejets. Le modèle saisonnier additif sans tendance semble s’adapter à ce paramètre au niveau d’oued Isser et oued Tafna. Quant à oued Mouillah, un mouvement saisonnier multiplicatif à tendance croissante à seuil est observé.
Quant à la fiabilité des modèles proposés, les modèles de prévision semblent acceptables pour la conductivité et la DCO. En revanche, la MES étant trop sensible aux variations des débits, le modèle concentration-débit lui est donc le mieux adapté.
Notons enfin que l’application de cette analyse exploratoire à tous les autres descripteurs physico-chimiques permettrait d’établir un modèle complet du comportement de la qualité des eaux de surface dans le bassin de la Tafna.
Appendices
Remerciements
Nous tenons à remercier le laboratoire d’analyse de l’Agence Nationale des Ressources Hydraulique - Direction Régionale Ouest d’Oran, Algérie, pour avoir mis à notre disposition toutes les données nécessaires à l’accomplissement de ce travail.
Références bibliographiques
- BÉRON P., BRIÈRE F. et A. BULU, 1982. Recherche d’une fonction de répartition. Eau du Québec, 15, 1, 47- 51.
- BOUANANI A., 2004. Hydrologie, transport solide et modélisation. Étude de quelques sous-bassins de la Tafna. Thèse de Doctorat, Université Tlemcen, Algérie, 250 p.
- CLOSE-LECOCQ J.F. et C. EK., 1985. Quantités de matières transportées en solution et en suspension par l’effluent majeur du karst belge, la Meuse. Ann. Soc. Géol. Belgique, 106, 275-280.
- DADI S., 1991. Qualité des eaux de la Moselle à la prise d’eau du district de l’agglomération Nancienne. Analyse des données pour la période 1973-1988. Thèse de Doctorat, I.N.P.L, Nancy, France, 212 p.
- DAHMANI B., HADJI F. et F. ALLAL, 2002. Traitement des eaux du bassin hydrographique de la Tafna (N-W Algeria). Desalinatn, 152, 113-124.
- DUPRAZ C., 1984. Bilans des transferts d’eau et d’éléments minéraux dans trois bassins versants comparatifs à végétations contrastées (Mont-Lozère. France). These de Doctorat Ingénieur, Université Orléans, France, 363 p.
- FOSTER I.D.L., 1978. A multivariate model of storm-period solute behaviour. J. Hydrol., 39, 339-353.
- GHENIM A., 2001. Contribution à l’étude des écoulements liquides et dégradations du bassin versant de la Tafna. Mémoire de Magister, Université Tlemcen, Algérie, 193 p.
- GUILBOT A., SALLERON J.L. et J.F. ZUMSTEIN, 1986. Traitement des séries chronologiques de qualité des eaux superficielles : détermination des hétérogénéités et des tendances d’évolution, Trib. Cebedeau, 508, 39, 3-15.
- MEYBECK M., 1984. Les fleuves et le cycle géochimique des éléments. Thèse d’État, Université Pierre et Marie Curie, Paris VI, France, N° 84-85.
- PENVERNE Y., 1983. Application de l’analyse multidimensionnelle au traitement statistique des analyses d’eau. Collection recherche environnement, N° 22, 5e journées scientifiques et techniques « L’eau la recherche l’environnement », Lille 25-27 octobre.
- TERFOUS A., MEGHNOUNIF A. et A. BOUANANI, 2001. Étude du transport solide en suspension dans l’oued Mouillah (Nord Ouest Algérie), Rev. Sci. Eau, 14, 175‑185.
List of figures
List of tables
Tableau 1
Caractéristiques des sous-bassins de la Tafna.
Characteristics of the sub-basins of the Tafna.
Sous Bassin |
Cours d’eau |
Surface (km2) |
Pentes I (%) |
Couvert végétal dégradé ou mort (%) |
---|---|---|---|---|
HauteTafna |
Tafna |
255,5 |
I>25 % dans 49 % de la surface |
43,7 % |
Isser |
Isser |
1139,7 |
I>30 % dans 32 % de la surface |
39,3 % |
Mouillah |
Mouillah |
2650 |
I<5 % dans 50 % de la surface |
49,4 % |
Tableau 2
Variabilité de la composition physico-chimique des eaux (avril 1995-mars 2002).
Variability of physicochemical water quality (April 1995-March 2002).
Paramètres |
Station 160426 |
Station 160202 |
Station 160614 |
|||
---|---|---|---|---|---|---|
Min |
Max |
Min |
Max |
Min |
Max |
|
T °C |
9 |
21 |
7,9 |
30 |
8,3 |
26,5 |
pH |
7,4 |
8,8 |
6,5 |
8,9 |
7,3 |
9,1 |
O2 (mg/L) |
3,6 |
10,1 |
0 |
7,5 |
5,7 |
13,5 |
MES (g/L) |
0,02 |
33,2 |
0,01 |
77,9 |
0,01 |
102,6 |
Cond.(µS/cm) |
361 |
1960 |
375 |
3300 |
496 |
2870 |
Ca2+(mg/L) |
25 |
130 |
43 |
251 |
40 |
165 |
Mg2+(mg/L) |
15 |
109 |
17 |
134 |
14 |
114 |
Na+(mg/L) |
18 |
159 |
7 |
449 |
35 |
391 |
K+(mg/L) |
2 |
35 |
2 |
47 |
2 |
16 |
Cl-(mg/L) |
48 |
363 |
33 |
763 |
41 |
694 |
SO42-(mg/L) |
34 |
252 |
6 |
336 |
38 |
278 |
HCO3-(mg/L) |
134 |
527 |
69 |
881 |
131 |
485 |
NO3-(mg/L) |
2 |
32 |
2 |
218 |
2 |
55 |
NH4+(mg/L) |
0,01 |
2,40 |
0,52 |
106,40 |
0 |
7,40 |
DCO(mg/L) |
10 |
80 |
60 |
400 |
10 |
290 |
DBO5 (mg/L) |
1,30 |
21 |
13,60 |
212 |
4,20 |
76,30 |
Tableau 3
Résultats de la décomposition des séries chronologiques d’analyse de concentrations (Ct) au mois d’ordre t (l,.…, N).
Results of the analysis of the chronological series of concentrations (Ct) in the month of order t (l,…., N).
Station |
Paramètre |
Tendance |
Composantes saisonnières |
|||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Avril |
Mai |
Juin |
Juil. |
Août |
Sept. |
Oct. |
Nov. |
Déc. |
Janv. |
Fév. |
Mars |
|||
ST160426 |
Conductivité |
C=1066,1+5,3t |
2,80 |
‑138,07 |
131,60 |
196,22 |
290,92 |
‑154,1 |
‑170,40 |
‑29,43 |
‑68,01 |
‑94,00 |
15,4 |
17,0 |
ST160614 |
DCO |
C=37,40 |
‑9,40 |
‑5,30 |
‑8,02 |
‑2,36 |
‑3,87 |
‑2,20 |
5,3 |
5,82 |
7,00 |
11,30 |
9,40 |
‑7,75 |
Conductivité |
C=1250,00 |
22,50 |
‑140,1 |
479,40 |
618,04 |
110,65 |
‑224,1 |
‑271,0 |
‑215,63 |
‑118,9 |
‑157,3 |
‑18,2 |
‑85,4 |
|
ST160202 |
DCO |
C=56,10 |
‑1,36 |
‑0,45 |
7,40 |
‑0,93 |
7,08 |
2,21 |
4,68 |
‑8,05 |
‑10,70 |
‑6,38 |
1,73 |
4,75 |
Conductivité |
C=810,2+803,3 log(t) |
118,1 |
112,3 |
113,9 |
111,8 |
97,7 |
65,75 |
68,9 |
118,4 |
103,8 |
96,3 |
101 |
91,2 |
|
|
DCO |
C=136+28,1 log(t) |
117,7 |
111,7 |
103,3 |
80,1 |
102,2 |
71,4 |
100,8 |
69,1 |
98,23 |
101,6 |
128,9 |
114,9 |