Abstracts
Résumé
L’assainissement des eaux usées par infiltration percolation appartient à la filière de traitement des rejets polluants à cultures fixées. Dans un contexte géographique spécifique et pour une population avoisinant 500 à 1 000 équivalents habitants, elle paraît bien indiquée. Filière dite rustique, elle n’en est pas moins complexe. L’objectif de cette étude est de contribuer, à travers une simulation numérique, à la compréhension des phénomènes physiques et biochimiques qui s’établissent au sein d’un lit d’infiltration percolation. Les aspects essentiels à l’activité bactérienne que sont l’hydrodynamique du milieu poreux, le développement de la biomasse active, le transport, la consommation et les transferts d’oxygène y sont abordés. À travers des essais d’une vérification méthodique du modèle effectuée à partir des solutions analytiques, il ressort principalement que la dispersion hydrodynamique et le taux de dégradation ont des effets contraires sur le rendement d’abattement des charges polluantes. En outre, un résultat significatif obtenu est la comparaison qualitative et quantitative des apports convectifs et diffusifs en oxygène au sein des lits d’infiltration percolation qui sont à aération naturelle.
Mots clés:
- Biomasse active,
- infiltration percolation,
- milieux poreux,
- modélisation,
- non saturé,
- oxygène,
- substra,
- transfert
Abstract
Wastewater sanitation using infiltration/percolation is part of an approach that uses attached microorganisms to treat pollutant loads. It appears suitable for a specific geographical context, and for population equivalents of approximately 500-1000 people. The aim of this study was to improve, by means of a numerical simulation, the understanding of certain physical and biochemical phenomena observed within an infiltration/percolation bed. All the aspects essential to bacterial activity are examined, including: the hydrodynamics of the porous media; the development of an active biomass; transport; and oxygen transfer and consumption. The latter are of paramount importance in non-saturated porous media, where significant aeration can take place, whereas in saturated soils and aquifers containing nitrogenous and organic compounds, the oxygen in water is rapidly consumed.
The model we have formulated includes seven equations, which describe macroscopic transport, and are coupled and non-linear. The terms “wells/sources” are functions of unknown variables. The resolution of the equations, obtained after discretization of the equations using Euler’s finite difference method, was performed using Thomas’ algorithm and Fortran 95 programming. We used an innovative approach: analytical solutions developed for saturated porous media were modified to take into account a heterogeneous flow field in a non-saturated porous medium. In a systematic approach, we tested two problems that are part of a gradual verification process: one-dimensional convection-dispersion solute without a kinetic reaction; one-dimensional solute with a first-order decay.
The code we have developed insures a very good approximation of the solute transport within a non-saturated porous medium. For a given rate of flow and a given supply period, the greater the dispersion, the quicker the solute will become homogeneous. In other words, a very high dispersion will induce a very low residence time for the solute within the medium. In wastewater treatment within sand beds, the residence time or contact period between the pollutant matter transported by the effluent and the purifying biomass attached to the support is thus a parameter that is linked to the dispersion of the effluent within the medium. It also appears that the reduction in pollutant load is optimized within a biofilm with a high degradation rate, and for an effluent with a low dispersion coefficient. This result is coherent with the link between dispersion and residence time of the effluent in the system.
We also examined the impact that the hydraulic load and the substrate content in the effluent have on the oxygenation capacities of a filtering mass. A qualitative and quantitative analysis of the incoming oxygen flow was performed. Thus we show that, at the beginning of the supply period, convection is more influential than diffusion. We also present several results from the simulations of substrate reduction profiles, which were very closely linked to oxygen content profiles. Thus we observed a rapid decrease in oxygen content due to intensive bacterial activity in the upper part of sand filters, followed by an increase in oxygen towards the bottom of the filter due to the absence of substrate. The main conclusion of this part of the study was that in order to optimize the ability for oxygenation within infiltration/percolation beds, it would be preferable to connect them to the separate sewer networks, which yield more concentrated effluents than do combined sewer networks.
Keys words:
- Active biomass,
- infiltration/percolation,
- porous media,
- modelling,
- non-saturated,
- oxygen,
- substrate,
- transfer
Appendices
Références bibliographiques
- Atkinson B. et I. J. Davies, 1974. The overall rate of substrate uptake (reaction) by microbial films, I, A biological rate equation, Trans. Inst. Chem. Engrs., 52, 248-259.
- Bancolé A.F., Brissaud. et T. Gnagne, 2003. Oxidation processes and clogging in intermittent unsaturated infiltration, Water Sci. Technol., 48, 139-146.
- Broadbridge P. et I. White, 1988. Constant rate rainfall infiltration: A versatile nonlinear model 1. Analytic solution. Water Resour. Res., 24, 145-154.
- Capdeville B.R., Belkhadir R. et H. Roques, 1988. Étude descriptive fondamentale et modélisation de la croissance d’un film biologique-II. Nouveau concept de modélisation de la croissance d’un film biologique. Water Res., 22, 71-77.
- Chen-CHarpentier B., 1999. Numerical simulation of biofilm growth in porous media. J. Comput. Appl. Math., 103, 55-66.
- Christensen T.H., Parker B.L. et J.C. Refsgaard, 1986. A model for the unsaturated zone oxygen transport and consumption model. A review of models for oxygen transport and consumption in soils with the intention of incorporation into geohydrological solute transport models. Department of Environmental Engineering, Technical University of Denmark. DK-2800, Lyngby.
- Cooper P., 2004. The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates. 9th International Conference on Wetland Systems for Water Pollution Control. Avignon, France, 26-30 septembre 2004.
- Currie J.A., 1960. Gaseous diffusion in the aeration of aggregated soils. Soil Sci., 92, 40-45.
- Darcy H., 1856. Public Fountains of Dijon’s Town. Paris : Victor Dalmont.
- Deb A.K., 1969. Theory of sand filtration. J. Sanit. Eng. Div. ASCE, 95, 399-422.
- Fabritz J., 1995. A two dimensional numerical model for simulating the movement and biodegradation of contaminants in saturated aquifer. Mémoire de maîtrise, Université de Washington, 139 p.
- Fetter C.W., 1993. Contaminant hydrogeology. Macmillan Publishing Company, PRENTICE HALL (éditeur), New Jersey, États-Unis, 458 p.
- Headley T.R., Davison L. et A. Yeomans, 2004. Removal of ammonium-N from landfill leachate by vertical flow wetland: a pilot study. 9th International Conference on Wetland Systems for Water Pollution Control. Avignon, France, 26-30 septembre, 2004.
- Hermanowicz S.W., 1997. Biofilm structure: An interplay of models and experiments. Department of Civil and Environmental Engineering, University of California, Berkeley, Californie.
- Insel G., Gül Ö.K., Orhon D., Vanrolleghem P.A. et M. Henze, 2002. Important limitations in the modeling of activated sludge: biased calibration of the hydrolysis process, Water Sci. Technol., 45, 23-36.
- Kruh G. et E. Segall, 1981. Nitrogen dynamics in soil. Dans : Frissel M.J., Van Veen J.A. (éditeurs) : Simulation of Nitrogen behaviour of soil-plant systems, Centre for Agricultural Publishing and Documentation, 126-144.
- Lehmann F., 1996. Hydrodynamique en milieux poreux hétérogènes non saturés : Identification des paramètres par approche inverse. Thèse de doctorat en mécanique. Université Louis Pasteur de Strasbourg, Strasbourg I, France, 191 p.
- Menoret C., 2001. Traitement d’effluents concentrés par cultures fixes sur gravier ou pouzzolane. Thèse de doctorat en mécanique, génie mécanique et génie civil. Université des Sciences du Languedoc, Montpellier II, France, 124 p. + annexes.
- Mills W.B., Liu S. et F.K. Fong, 1991. Literature review and model (COMET) for colloid/metals transport in porus media, Ground Water, 29, 199-207.
- Molz F.J., Widdowson M.A. et L.D. Benefield, 1986. Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media. Water Resour. Res., 22, 1207-1216.
- MORGENROTH E. et p.a. wilderer, 1999. Influence of detachment mechanisms on competition in biofilms. Water Res., 34, 417-426.
- Mualem Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513-522.
- Odencrantz J.E., 1992. Modeling the biodegradation kinetics of dissolved organic contaminants in a heterogeneous two-dimensional aquifer. Thèse de doctorat, University of Illinois, Urbana-Champaign, Illinois, États-Unis, 147 p.
- POULSEN T.G., 1994. An adaptable two dimentional numerical model for simulating movement of organic pollutants in unsaturated soils. Mémoire de maîtrise, Université de Washington, Seattle, Washington.
- Poulsen T.g., 1991. Behavior of organic pollutants in unsaturated soil. Thèse de maîtrise, Environnmental Engineering Laboratory, University of Aalborg, Danemark.
- Raugh W., Vanhooren H et P. Vanrolleghem, 1999. A simplified mixed-culture biofilm model. Water Res., 33, 2148-2162.
- Richards L.A., 1931. Capillary conduction of liquids through porous mediums. Phys., 1, 318-333.
- Rifai H.S, Bedient P.B., Wilson J.W., Miller K.M. et J.M. Armstrong, 1988. Biodegradation modeling at aviation fuel spill site. J. Environ. Eng., 114, 1007-1029.
- Rittmann B.E., 1982. The effect of shear stress on biofilm loss rate. Biotechnol. Bioeng., 24, 501-506.
- Schwarz B.C.E., Devinny J.S., Joseph S. et T.T. Tsotsis, 2001. A biofilter network model – Importance of the pore structure and other large-scale heterogeneities. Chem. Eng. Sci., 56, 475-483.
- Sleep B.E. et J.F. Sykes, 1993, Compositional simulation of groundwater contamination by organic compounds.1. Model development and verification. Water Resour. Res., 29, 1697-1708.
- Taylor S.W. et P.R. Jaffé, 1990. Substrate and biomass transport in porous medium. Water Resour. Res., 26, 2181-2194.
- Tiwari S.K. et K.L. Bowers, 2001. Modeling biofilm growth for porous media applications. Math. Comput. Modelling, 33, 299-319.
- van Genuchten M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J., 44, 892-898.
- Vasel J.L., 2003. Aération naturelle dans les procédés d’épuration à Biomasse fixée et les écosystèmes aquatiques. Dans : Transferts gaz-liquide dans les procédés de traitement des eaux et des effluents gazeux, Lavoisier (éditeur).
- Viotti P., Eramo B., Boni M.R., Carucci A., Leccese M. et S. Sbaffoni, 2002. Development and calibration of a mathematical model for the simulation of the biofiltration process. Adv. Environ. Res., 7, 11-33.
- Wanko A., Mose R. et A. Lienard, 2004. Capacités de traitement d’un effluent de synthèse en infiltration percolation. Rev. Sci. Eau, 18, 2, 165-175.
- Warrick A.W., Lomen D.O. et A. Islas, 1990. An analytical solution to Richards equation for a draining soil profile. Water Resour. Res., 26, 253-258.
- WIND G.P. et W. VAN DOORNE, 1975. A numerical model for the simulation of unsaturated vertical flow of moisture in soil. J. Hydrol., 24, 1-20.
- Zheng C., 1993, Extension of the method of characteristics for simulation of solute transport in three dimensions. Ground Water, 31, 456-465.