Abstracts
Résumé
L'objectif du présent travail est l'élaboration d'une méthodologie de validation des données hydrométriques mesurées dans un réseau d'assainissement. L'information validée est utilisée aussi bien en temps réel, pour optimiser les consignes de gestion, qu'en temps différé, pour poser le véritable diagnostic et évaluer, sur une base quotidienne, l'efficacité des systèmes d'assainissement.
Le principe de base de la méthodologie proposée repose sur la redondance analytique de l'information provenant d'une part de la mesure directe du débit sur le terrain et d'autre part du débit simulé à partir des variables météorologiques. On compare ainsi d'une part, l'écart entre la valeur prévue par un modèle autorégressif (AR) et la valeur mesurée et d'autre part, l'écart entre la valeur prévue par ce même modèle AR et la valeur simulée par un modèle hydrologique. Parmi les valeurs, mesurée et simulée, celle qui se rapproche le plus de la valeur prévue est retenue. Afin de considérer des modèles non stationnaires et d'éviter le biais d'estimation des paramètres de régression par la méthode standard des moindres carrés, le filtre de Kalman est utilisé pour identifier les paramètres du modèle AR.
La méthodologie proposée a été testée avec succès sur un bassin urbain de la municipalité de Verdun. L'hydrogramme mesuré a été bruité artificiellement à la fois par un bruit blanc et par un certain nombre de perturbations de grandes amplitudes et de différentes formes. Le processus de validation a permis de retrouver pratiquement les mesures initiales, non bruitées. Les critères de performance introduits sont largement concluants.
Mots-clés:
- Validation,
- redondance,
- débit,
- mesure,
- filtre de Kalman,
- autorégressif,
- temps réel,
- assainissement
Abstract
We developed an automated methodology for real-time validation of hydrometric data in a sewer network. Our methodology uses real-time validated data to optimise system management and non-real-time data to evaluate day-to-day performance.
Two approaches can be used to validate and correct hydrometric data; the choice depends on the number of level gauges present in a system. In single gauge systems, univariate filtering is used to smooth data. For example, frequency filtering systematically eliminates values corresponding to frequencies higher than a predetermined threshold frequency. In systems with several gauging stations-duplex, triplex, or multiplex systems-the multivariate filtering method proposed here can be used to validate data series from each gauge. Material redundancy in duplex or higher order systems makes it possible to detect a deficient gauge, using a decision rule to set aside erroneous readings before averaging accepted values. Part of the underlying principle of this methodology is heavier reliance on gauges that give readings consistent with previous and subsequent validated values in a given series. Thus isolated positive or negative variations within a series are eliminated if corresponding variation values at other gauges are more consistent. To evaluate persistence, a reading is compared to a value predicted by an autoregressive (AR) model calibrated by the previous validated reading.
This filtering technique constitutes an intelligent alternative to the frequency filtering method mentioned above. In more practical terms, it compares the deviation of an AR model prediction from a measured value with the deviation of the same AR model prediction from a value estimated by a regressive model at other stations in the network. Among the values measured and estimated by the regressive model, the one nearest the AR model prediction is retained.
Our methodology also relies on analytical redundancy generated by direct measurement of flow and hydrological simulation. More precisely, the deviation of the AR model prediction from the measured value is compared with the deviation of the same AR model prediction from a value obtained from a hydrological simulation model. Among measured and simulated values, the one nearest the AR model prediction is retained. To allow consideration of nonstationary models and to avoid the well-known bias of the least squares method, the Kalman filter is used to identify the parameters of the AR model.
The methodology we propose employs three models. The first generates analytical redundancy using hydrological modelling. An autoregressive model is then used to predict future runoff rate values. Finally, a voting process model is used to compare measured and simulated values.
The proposed methodology was tested on the Verdun sewer system in Quebec with successful results. Two types of artificial disturbance of the measured hydrograph were created: white noise was added to measured values and disturbances of large amplitude and various forms were introduced. The methodology produced the initial values and performance criteria were conclusive. Thus on-site testing confirms that this approach allows completely automated detection and correction of most anomalies. Flood peaks were neither underestimated nor overestimated, and total runoff volumes were retained.
Keywords:
- Validation,
- redundancy,
- flow,
- measurement,
- Kalman filter,
- autoregressive,
- real time,
- sewer