Abstracts
Résumé
Certains procédés d’épuration extensive des eaux usées utilisent les lentilles d’eau. Les rejets des eaux usées sont de plus en plus sujets à des pollutions de natures diverses, notamment les métaux lourds. Dans ce travail, on procède à une évaluation comparée de la tolérance et de l’accumulation de deux métaux lourds, le cuivre et le chrome, par deux espèces de lentilles d’eau Lemna minor et Lemna gibba. Bien que sous climat de type méditerranéen, L. gibba soit plus utilisée que L. minor, les données disponibles dans la littérature concernent plutôt L. minor. L’évaluation des paramètres toxicologiques montre chez L. gibba une tolérance nettement supérieure aux effets toxiques des deux métaux expérimentés. Le chrome est moins toxique que le cuivre et s’accumule à des taux supérieurs à ceux du cuivre dans les tissus des plantes. Pour les deux métaux, l’accumulation est plus importante chez L. minor. Cependant, on pense que L. gibba serait plus indiquée dans des applications en phytoremédiation que L. minor, vu sa tolérance et sa productivité en biomasse. Les potentialités de ces deux espèces pour des applications de ce type se justifient par des taux d’accumulation fort élevés, spécialement pour le chrome où ils dépassent largement les 1000 µg g‑1 de poids sec. En effet, les concentrations des plantes en Cr obtenues dans ce travail atteignent 2140 µg g‑1 chez L. minor et 1710 µg g‑1 chez L. gibba. Ces performances montrent un potentiel fort intéressant en comparaison à d’autres macrophytes comme la jacinthe d’eau par exemple.
Mots clés:
- Lemna minor,
- Lemna gibba,
- chrome,
- cuivre,
- tolérance,
- accumulation,
- phytoremediation
Summary
Natural wastewater treatment technologies are common practice in many regions of the world. Although these technologies are normally meant for domestic wastewater treatment, they can have broader applications such as the treatment of water contaminated by heavy metals.
Among various existing technologies, systems that use duckweed are exploited for wastewater treatment in various regions of the world. In Morocco, this type of system has been tested on an experimental scale and a pilot scale. The most common duckweeds species are Lemna minor L. and Lemna gibba L. L. gibba is used in Mediterranean climates more often than L. minor, but literature data on the tolerance and accumulation of heavy metals are mostly available for L. minor.
In the current study, we compared the tolerance and accumulation of two heavy metals, copper (Cu) and chromium (Cr), for these two duckweed species. Thus, this study compares the potential of these two duckweed species to be used as a method of decontaminanting Cu‑ and Cr‑contaminated water. The experimental design used hydroponic crops of the two species. Forty fronds of each species were sown in plastic pots containing 100 mL of White nutritive solution with a pH adjusted to 6.8. As experimental treatments, we used exposures corresponding to the following concentrations: 0.5; 1; 2; 3; 4; 5 mg Cu/L and 3; 5; 10; 20; 30; 35 mg Cr/L. Each treatment was repeated five times. In order to compensate for water loss by evapotranspiration, we added 15 mL of the corresponding solution to each treatment daily.
Generally, the results obtained confirm that Cu is more toxic than Cr and that the two species of duckweed have different tolerance levels; L. minor is more sensitive than L. gibba for both metals. For Cu, we observed a highly significant inhibition of growth in response to the gradient of Cu concentrations used, the growth of L. minor being more affected than that of L. gibba. For example, the time required for L. minor colonies to double was more than four days for 1 mg Cu/L, whereas for L. gibba this was observed only at 3 mg Cu/L. The toxicological parameters reflect this observation as L. minor had both a lower NOEC (No Observed Effect Concentration) and a lower IC50 (50% Inhibition Concentration) than those reported for L. gibba. Comparatively, these results show a higher tolerance of Cu contamination for L. gibba.
For Cr, L. minor was more sensitive than L. gibba, but in much less marked way than for Cu. Indeed, the time required to double the colony size and the NOEC value were similar for the two species, whereas the IC50 of L. minor was lower than that of L. gibba. The comparison of the rate of inhibition confirms a slightly greater sensitivity of L. minor to Cr exposure.
The Cu and Cr concentrations in the biomass increased with the concentration of metal; the highest contents were observed in the treatments with the highest concentrations used: 5 mg Cu/L and 10 mg Cr/L. However, the BCF (Bioconcentration Factor) decreased with the concentration of the treatment; the highest values were observed for the treatments with the lowest concentrations (1 mg Cu/l and 3 mg Cr/L). With respect to possible applications in phytoremediation, the potential use of these two species would be more efficient for low levels of contamination.
The two species accumulate the two metals at different rates; the accumulation of Cr is greater than that of Cu and L. minor shows higher rates of accumulation. Copper concentrations of approximately 800 µg/g were obtained in L. minor exposed to 5 mg Cu/L. For Cr, concentrations were approximately 2140 µg/g obtained in L. minor exposed to 10 mg Cr/L. For L. gibba, the maximum concentrations obtained were 745 µg/g and 1710 µg/g respectively for the treatments of 5 mg Cu/L and 10 mg Cr/L. Similarly, the BCF estimated at L. minor was higher than that of L. gibba.
Compared with other macrophyte species, the duckweeds show a very interesting potential for metal accumulation. Indeed, for Cu, accumulation was definitely higher than that for other species such as Eichhornia crassipes and Polygonum hydropiperoides. The BCF obtained was higher than those observed for species of Typha and Spartina. These results confirm that L. minor and L. gibba could be good Cu accumulating species compared to other macrophytes. For Cr, other species of macrophytes accumulate this metal to a greater or lesser extent: E. crassipes (slower rate than that of the duckweeds), Nymphea alba (similar rate to that of the duckweeds) or Azolla pinnata (higher rate than the duckweeds). The Cr contents accumulated by the two duckweed species would justify their classification as hyperaccumulator species.
With respect to tolerance, accumulation potential and biomass productivity, L. gibba shows potential as a species that could be used in phytoremediation and in particular the rhizofiltration of wastewater contaminated by Cu and Cr.
Keywords:
- Lemna minor,
- Lemna gibba,
- chromium,
- copper,
- tolerance,
- accumulation,
- phytoremediation
Appendices
Références
- ALBERTS J.J., PRICE M.T., KANIA M., 1990. Metal concentrations in tissues of Spartina alterniflora (Loisel.) and sediments of Georgia salt marshes. Estuar. Coast. Shelf Sci., 30, 47-58.
- BAKER A.J.M., BROOKS R., REEVES R., 1989. Growing for gold and copper and zinc. New Sci., 1603, 44‑48.
- BASSI M., CORRADI M.G., REALINI M., 1990. Effects of chromium (VI) on two freshwater plants, Lemna minor and Pistia stratiotes, I. Morphological observations. Cytobios, 62, 27-38.
- BASSI R., SHARMA S.S., 1993. Changes in proline content accompanying the uptake of zinc and copper by Lemna minor. Ann. Bot., 72, 151-154.
- BRAUN M., 1995. L’épuration des eaux usées par lagune à Lemna. N.S.T., 13, 261-267. (à compléter)
- BRIX H., 1993. Wastewater treatment in constructed wetlands: system design, removal processes, and treatment performance. Dans : Constructed Wetlands for Water Quality Improvement, MOSHIRI G.A. (Éditeur), Lewis Publishers, 9-22.
- BRYLER-ISKANE-SHELADIA (groupement d’étude), 1992. Étude du schéma directeur d‘assainissement liquide de la ville de Tétouan, synthèse de la mission A. Municipalité de Tétouan. Maroc.
- BUCKLEY J.A., 1994. Bioavailability of copper in wastewater to Lemna minor with biological and electrochemical measures of complexation. Water Res., 28, 2457‑2467.
- COTTENIE A., VERLOO M., KIEKENS L., VELGHE G., CAMERLYNCK R., 1982. Chemical analysis of plants and soils. Lab. Analytical and Agrochemistry State University, Ghent. Belgium.
- DEMCHIK M., GARBUTT K., 1999. Growth of woolgrass in acid mine drainage. J. Environ. Qual., 28, 243-249.
- DIRILGEN N., INEL Y., 1994. Effects of zinc and cooper on growth and metal accumulation in duckweed Lemna minor L. Bull. Environ. Contam. Tox., 35, 442-447.
- DUNBABIN Y.S., BOWMER K.H., 1992. Potential use of constructed wetlands for treatment of industrial wastewaters containing metals. Sci. Total Environ., 111, 151-168.
- ELLIS J.B., SHUTES R.B, REVITT D.M., ZHANG T.T., 1994. Use of macrophytes for pollution treatment in urban wetlands. Resour. Conserv. Recy., 11, 1-12.
- ENNABILI A., ATER M. 1997. Phytoécologie et productivité de quelques macrophytes du marais Smir. Dans : Les marais de Smir‑Restinga, écologie et propositions d’aménagement, ATER M. et DAKKI M. (Éditeurs). Trav. Inst. Sci., Mém. hors série, Rabat, Maroc, 27-37.
- ENNABILI A., ATER M., 1996. Flore (Pteridophyta et Spermatophyta) des zones humides du Maroc méditerranéen : Inventaire et Écologie. Acta Bot. Malacita., 21, 221-239.
- EZZAHRI J., ENNABILI A., ATER M., RADOUX M., 2001. Épuration extensive des eaux usées urbaines : expérimentation sous‑climat méditerranéen (M’diq, Nord-Ouest du Maroc). Ann. Chim-Sci. Mat., 26, S297-S311.
- Gijzen, H.J. et Veenstra, S., 2000. Duckweed-based wastewater treatment for rational resource recovery and reuse. Dans : Environmental Biotechnology and Cleaner Bioprocesses, Part II: Recycling and Treatment of Organic Wastes. Taylor and Francis, Philadelphie, 83‑100.
- HARTMAN W.A., MARTIN D.B., 1985. Effect of four agricultural pesticides on Daphnia pulex, Lemna minor and Potamogeton pectinatus. Bull. Environ. Contam. Tox., 35, 646‑651.
- HELFIELD J.M., DIAMOND M.L., 1997. Use of constructed wetlands for urban stream restoration: a critical analysis. Environ. Manage., 21, 329-341.
- HEWITT E.J., 1966. Sand and water culture methods used in the study of plant nutrition, 2nd edition, Commonwealth Agricultural Bureaux, Farnham, Buckhimhamshire, UK. Technical communication, No 22, 477.
- HUANG X.D., DIXON D.G., GREENBERG B.M., 1995. Increased polycyclic aromatic hydrocarbon toxicity following their photomodification in natural sunlight. Dans : Impacts on Duckweed Lemna gibba L. G3. Ecotox. Environ. Saf., 32, 194-200.
- HUTCHINSON T.C., CZYRSKA H., 1975. Heavy metals toxicity and synergism to floating aquatic weeds. Verh. Int. Verein. Limnol., 19, 2101-2111.
- JAIN S.K., GUJRAL G.S., JHA N.K., VASUDEVAN P., 1988. Heavy metal uptake by Pleurotus sajor-caju from metal-enriched duckweed substrate. Biol. Waste, 24, 275-282.
- JAIN S.K., VASUDEVAN P., JHA N.K., 1989. Removal of some heavy metals from polluted water by aquatic plants, studies on duckweed and water velvet. Biol. Waste, 28, 115‑126.
- JENNER H.A., JANSSEN MOMMEN J.P.M., 1993. Duckweed Lemna minor as a tool for testing toxicity of coal residues and polluted sediments. Arch. Environ. Contam. Tox., 25, 3-11.
- KIVAISI A.K., 2001. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review. Ecol. Eng., 16, 545-560.
- MALLICK N., SHARDEN D.U., RAIL C., 1996. Removal of heavy metals by two free floating aquatic macrophytes. Biomed. Environ. Sci., 9, 399-407.
- MANDI L., 1994. Marrakesh waste water purification experiment using aquatic plants Echornia crassipes and Lemna gibba. Water Sci. Technol., 283-287.
- MATHIS B.J., CUMMINGS T.F., GOWER M., TAYLOR M., KING C., 1980. Dynamics of manganese cadmium and lead. Dans : Experimental power plant ponds. Hydrobiologia., 67, 197-206.
- MEAGHER R.B., 2000. Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol., 3, 153-162.
- MO S.C., CHOI D.S., ROBINSON J.W., 1989. Uptake of mercury from aqueous solution by duckweed, the effects of pH, copper and humic acid. J. Environ. Sci. Health A, 24, 135‑146.
- MOHAN B.S., HOSETTI B.B., 1997. Potential phytotoxicity of lead and cadmium to Lemna minor grown in sewage stabilisation ponds. Environ. Pollut., 2, 233-238.
- MUNGUR A.S, SHUTES R.B.E., REVITT D.M., HOUSE M.A., 1995. An assessment of metal removal from highway runoff by a natural wetland. Water Sci. Technol., 32, 169-175.
- NASU Y., KUGIMOTO M., 1981. Lemna (Duckweed) as an indicator of water pollution. I The sensivity of Lemna paucicostata to heavy metals. Arch. Environ. Contam. Tox., 10, 159‑169.
- NASU Y., KUGIMOTO M., TANAKA O., TAKIMOTO A., 1984. Lemna as an indicator of water pollution and the absorption of heavy metals by Lemna. Fresh Water Biological Monitoring, Cardiff, UK, 113-120, QH, 96, A3. F73, compte rendu.
- O.N.E.P., 1988. Contrôle de la pollution des eaux. Rapport, Office National de l’Eau Potable, Maroc.
- ORON G., DE VERGT A., PORATH D., 1987. The role of the operation regime in waste water treatment with duckweed. Water Sci. Technol., 19, 97-105.
- ORON P., PORATH D., 1987. Performance of the duckweed species Lemna gibba on municipal wastewater for effluent renovation and protein production. Biotechnol. Bioeng., XXIX, 258-268.
- PUNZ W., SIEGHARDT H., 1993. The responce of roots of herbacous plant species to heavy metals. Environ. Exp. Bot., 33, 85-98.
- QIAN J.H., ZAYED A., ZHU Y.L., YU M., TERRY N., 1999. Phytoaccumulation of trace elements by wetland plants: III. Uptake and accumulation of ten trace elements by twelve plant species. J. Environ. Qual., 28, 1448-1455.
- RASKIN I., SMITH R.D., SALT D.E., 1997. Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Plant Biol., 8, 221-226.
- RASKIN I., KUMAR P.N., DUSHENKOV S., ESALT D., 1994. Bioconcentration of heavy metals by plants. Curr. Opin. Plant Biol., 5, 285-290.
- REEVES R.D., BAKER A.J.M., BROOKS R.R., 1996. Abnormal accumulation of trace metals by plants. Mining Environ. Manage., 3 , 4-8.
- STROTHER S., 1981. Toxic effects of exogenous sorbose on Lemna minor and some other angiosperm. Ann. Bot.‑London, 47, 531-533.
- TAYLOR G.J., CROWDER A.A., 1983. Uptake and accumulation of heavy metals by Typha latifolia in wetlands of Sudbury, Ontario region. Can. J. Botany, 61, 63-73.
- TKALEC M., VIDAKOVIC CIFREK Z., REGULA I., 1998. The effect of oil industry «high density brines» on duckweed Lemna minor L. Chemosphere., 13, 2703-2715.
- UAUY R., OIVARES M., GONZALES M., 1998. Essentiality of copper in humans. Am. J. Clin. Nutr., 67 (Suppl.), 952S-960S.
- VAJPAYEE P., TRIPATHI R.D., RAI U.N., ALI M.B., SINGH S.N., 2000. Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere, 41, 1075-1082.
- VERHOEVEN J.T.A., MEULEMAN A.F.M., 1999. Wetlands for wastewater treatment: Opportunities and limitations. Ecolog. Eng., 12, 5-12.
- VYMAZAL J., BRIX H., COOPER P.F., HABERL R., PERFLER R., LABER J., 1998. Removal mechanisms and types of constructed wetlands. Dans : Constructed Wetlands for Wastewater Treatment in Europe, VYMAZAL J., BRIX H., COOPER P.F., GREEN M.B. and HABERL R. (Éditeurs), 17-66.
- WAHAAB R.A., LUBBERDING H.J., ALAERTS G.J., 1995. Copper and chromium (III) uptake by duckweed. Water Sci. Technol., 11, 105-110.
- WANG W., 1986. Toxicity tests of aquatic pollutants by using common Duckweed. Environ. Pollut. B, 11, 1-14.
- WANG W., 1990. Literature review on higher plants for toxicity testing. Water Air Soil Pollut., 59, 381-400.
- ZAYED A., GOWTHAMAN S., TERRY N., 1998. Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J. Environ. Qual., 27, 715-721.
- ZHU Y.L., ZAYED A.M., QIAN J.H., DE SOUZA M., TERRY N., 1999. Phytoaccumulation of trace elements by wetland plants: II Water hyacinth. J. Environ. Qual., 28, 339-344.