Abstracts
Résumé
La prise de décision fondée sur les données est indispensable dans l’atteinte de l’efficacité des systèmes éducatifs. Les directions d’école doivent constamment adapter leurs pratiques et prendre des décisions concernant les élèves et les ressources à mobiliser dans leurs écoles à travers l’interprétation de données provenant de multiples sources telles que les tests de rendement, les enquêtes scolaires, l’expérience perçue par les employé⋅e⋅s, etc. Bien que les politiques éducatives encouragent le recours aux données dans la gestion scolaire, force est de constater que peu d’attention est accordée aux compétences requises pour une meilleure interprétation des données scolaires. Cette étude critique de nature ontologique, fondée sur l’analyse de 26 documents, vise à présenter l’état des connaissances actuelles sur les compétences en interprétation de données des directions d’école. Des recommandations pratiques sont également formulées aux conseils scolaires et aux universités, et des pistes de recherche futures sont dégagées sur des thématiques à explorer.
Mots-clés :
- données scolaires,
- littératie statistique,
- directions d’école,
- littératie des probabilités,
- prise de décision
Abstract
Evidence-based decision-making is critical to achieving effective education systems. School principals must constantly guide their practices and make the best decisions about students and resources in their schools through the interpretation of data from diverse sources such as achievement tests, school climate surveys, perceived employee experience, etc. Although educational policies encourage the use of data, little attention is paid to the skills required to better interpret them. Based on the analysis of 26 documents, this critical ontological study aims to present the current state of knowledge on school principals’ sensemaking of data. Practical recommendations are also made for school boards and universities, and avenues for further research are identified.
Keywords:
- school data,
- statistical literacy,
- school principals,
- probability literacy,
- decision-making
Resumen
La toma de decisiones basada en datos es indispensable para conseguir la eficiencia de los sistemas educativos. Las direcciones de escuela deben adaptar constantemente sus prácticas y tomar decisiones que conciernen a los alumnos y a los recursos a movilizar a través de la interpretación de datos provenientes de múltiples fuentes, como los tests de rendimiento, las encuestas escolares, la experiencia percibida por los empleados, etc. Aunque las políticas educativas fomentan el recurso a los datos en la gestión escolar, es preciso constatar que se otorga poca atención a las competencias necesarias para una mejor interpretación de los datos escolares. Este estudio crítico de naturaleza ontológica, basado en el análisis de 26 documentos, se propone presentar los conocimientos actuales sobre las competencias en interpretación de datos de las direcciones escolares. Igualmente, formulamos recomendaciones prácticas a los consejos escolares y universitarios y esbozamos pistas de investigación futura sobre temáticas a explorar.
Palabras clave:
- escolares,
- alfabetización estadística,
- direcciones escolares,
- alfabetización de las probabilidades,
- toma de decisiones
Appendices
Bibliographie
- Allo, E. (1984). L’émergence des probabilités. Actes de la recherche en sciences sociales, 54, 77-81. https://doi.org/10.3406/arss.1984.2226
- Angué, K. (2009). Rôle et place de l’abduction dans la création de connaissances et dans la méthode scientifique peircienne. Recherches qualitatives, 28(2), 65-94. https://doi.org/10.7202/1085273ar
- Baba, V. V. et HakemZadeh, F. (2012). Toward a theory of evidence-based decision making. Management Decision, 50(5), 832-867. https://doi.org/10.1108/00251741211227546
- Batanero, C., Chernoff, E. J., Engel, J., Lee, H. S. et Sánchez, E. (2016). Research on teaching and learning probability. ICME-13 Topical Surveys. Springer. https://doi.org/10.1007/978-3-319-31625-3_1
- Brown, C., Schildkamp, K. et Hubers, M. D. (2017). Combining the best of two worlds: A conceptual proposal for evidence-informed school improvement. Educational Research, 59(2), 154-172. https://doi.org/10.1080/00131881.2017.1304327
- Catellin, S. (2004). L’abduction : une pratique de la découverte scientifique et littéraire. Hermès, La Revue, 39, 179-185. https://doi.org/10.4267/2042/9480
- Chen, Y. (2020). Data-driven decision-making literacy among rural community college leaders in Iowa: The role of leadership competencies. Community College Journal of Research and Practice, 44(5), 347-362. https://doi.org/10.1080/10668926.2019.1592032
- Cobb, G. W. et Moore, D. S. (1997). Mathematics, statistics, and teaching. The American Mathematical Monthly, 104(9), 801-823. https://doi.org/10.1080/00029890.1997.11990723
- Datnow, A. et Hubbard, L. (2016). Teacher capacity for and beliefs about data-driven decision making: A literature review of international research. Journal of Educational Change, 17(1), 7-28. https://doi.org/10.1007/s10833-015-9264-2
- Dollard, C. (2011). Preservice elementary teachers and the fundamentals of probability. Statistics Education Research Journal, 10(2), 27-47. https://doi.org/10.52041/serj.v10i2.346
- Earl, L. et Fullan, M. (2003). Using data in leadership for learning. Cambridge Journal of Education, 33(3), 383-394. https://doi.org/10.1080/0305764032000122023
- Etz, A. et Vandekerckhove, J. (2018). Introduction to Bayesian inference for psychology. Psychonomic Bulletin & Review, 25(1), 5-34. https://doi.org/10.3758/s13423-017-1262-3
- Gal, I. (2002). Adults’ statistical literacy: Meanings, components, responsibilities. InternationalStatistical Review/Revue internationale de statistique, 70(1), 1-51. https://doi.org/10.2307/1403713
- Gal, I. (2005). Towards “probability literacy” for all citizens: Building blocks and instructional dilemmas. Dans G. A. Jones (dir.), Exploring probability in school (vol. 40, p. 39-63). Springer.
- Gal, I. et Shilton, H. (2014, juillet). How do school principals understand and use the statistics in reports from national large-scale assessments [communication orale]. International Conference on Teaching Statistics (ICOTS9), Flagstaff. https://icots.info/9/proceedings/pdfs/ICOTS9_5B4_GAL.pdf
- Garfield, J. et Chance, B. (2000). Assessment in statistics education: Issues and challenges. Mathematical Thinking and Learning, 2(1-2), 99-125. https://doi.org/10.1207/S15327833MTL0202_5
- González, M. T., Espinel, M. C. et Ainley, J. (2011). Teachers’ graphical competence. Dans C. Batanero, G. Burrill et C. Reading (dir), Teaching statistics in school mathematics-challenges for teaching and teacher education: A joint ICMI/IASE study (p. 187-197). Springer. https://doi.org/10.1007/978-94-007-1131-0_20
- Hacking, I. (2006). The emergence of probability. A philosophical study of early ideas about probability, induction, and statistical inference (2e édition). Cambridge University Press. https://doi.org/10.1017/CBO9780511817557
- Hallée, Y. (2013). L’abduction et l’enquête sociale comme procédé méthodologique pragmatiste. Revue multidisciplinaire sur l’emploi, le syndicalisme et le travail, 8(1), 51-82. https://doi.org/10.7202/1026742ar
- Hallée, Y., Klitsch, A. et Vandewattyne, J. (2017). L’abduction de Peirce comme mode d’inférence et comme méthode et stratégie de recherche en sociologie : l’expérience de la négociation sociale en Belgique. Cahiers de recherche sociologique, 62, 203-224. https://doi.org/10.7202/1045620ar
- Hokor, E. K. (2020). Pre-service teachers’ probabilistic reasoning in constructivist classroom. Pedagogical Research, 5(2), 1-9. https://doi.org/10.29333/pr/7838
- Hunter, D. M. (2014). “About average”. A pragmatic inquiry into school principals’ meanings for a statistical concept in instructional leadership [thèse de doctorat, University of Regina]. DSpace. https://hdl.handle.net/10294/5737
- Jacobbe, T. et Carvalho, C. (2011). Teachers’ understanding of averages. Dans C. Batanero, G. Burrill et C. Reading (dir.), Teaching statistics in school mathematics – Challenges for teaching and teacher education: A joint ICMI/IASE study (p. 199-209). Springer. https://doi.org/10.1007/978-94-007-1131-0_21
- Jimerson, J. B. (2014). Thinking about data: Exploring the development of mental models for “data use” among teachers and school leaders. Studies in Educational Evaluation, 42, 5-14. https://doi.org/10.1016/j.stueduc.2013.10.010
- Jones, G. A., Langrall, C. W., Mooney, E. S. et Thornton, C. A. (2004). Models of development in statistical reasoning. Dans D. Ben-Zvi et J. Garfield (dir.), The challenge of developing statistical literacy, reasoning, and thinking (p. 97-117). Springer. https://doi.org/10.1007/1-4020-2278-6_5
- Kahneman, D. (2011). Thinking fast and slow. Farrar, Straus and Giroux.
- Karatoprak, R., Akar, G. K. et Börkan, B. (2015). Prospective elementary and secondary school mathematics teachers’ statistical reasoning. International Electronic Journal of Elementary Education, 7(2), 107-124.https://eric.ed.gov/?id=EJ1057855
- Kippers, W. B., Poortman, C. L., Schildkamp, K. et Visscher, A. J. (2018). Data literacy: What do educators learn and struggle with during a data use intervention? Studies in Educational Evaluation, 56, 21-31. https://doi.org/10.1016/j.stueduc.2017.11.001
- Lecoutre, M.-P. et Fischbein, E. (1998). Évolution avec l’âge de « misconceptions » dans les intuitions probabilistes en France et en Israël. Recherches en didactique des mathématiques, 18(3), 311-332. https://revue-rdm.com/1998/evolution-avec-l-age-de/
- Lecoutre, M.-P., Rovira, K., Lecoutre, B. et Poitevineau, J. (2006). People’s intuitions about randomness and probability: An empirical study. Statistics Education Research Journal, 5(1), 20-35. https://eric.ed.gov/?id=EJ843860
- Mandinach, E. B. et Schildkamp, K. (2021). Misconceptions about data-based decision making in education: An exploration of the literature. Studies in Educational Evaluation, 69, 1-10. https://doi.org/10.1016/j.stueduc.2020.100842
- Murray, J. (2013). Critical issues facing school leaders concerning data-informed decision-making. School Leadership & Management, 33(2), 169-177. https://doi.org/10.1080/13632434.2013.773882
- Nabbout-Cheiban, M. (2017). Intuitive thinking and misconceptions of independent events: A case study of US and French pre-service teachers. International Journal of Research in Undergraduate Mathematics Education, 3(2), 255-282. https://doi.org/10.1007/s40753-016-0038-x
- Pierce, R. et Chick, H. (2011). Reacting to quantitative data: Teachers’ perceptions of student achievement reports. Dans J. Clark, B. Kissane, J. Mousley, T. Spencer et S. Thornton (dir.), Mathematics: Traditions and [new] practices. Proceedings of the 34th Annual Conference of the Mathematics Education Research Group of Australasia (p. 631-639). AAMT/MERGA.
- Pierce, R., Chick, H., Watson, J., Les, M. et Dalton, M. (2014). A statistical literacy hierarchy for interpreting educational system data. Australian Journal of Education, 58(2), 195-217. https://doi.org/10.1177/0004944114530067
- Randolph, J. (2009). A guide to writing the dissertation literature review. Practical Assessment, Research, and Evaluation, 14(13), 1-13. https://doi.org/10.7275/b0az-8t74
- Roudaut, F. (2017). Comment on invente les hypothèses : Peirce et la théorie de l’abduction. Cahiers philosophiques, 150, 45-65. https://doi.org/10.3917/caph1.150.0045
- Schildkamp, K. (2019). Data-based decision-making for school improvement: Research insights and gaps. Educational Research, 61(3), 257-273. https://doi.org/10.1080/00131881.2019.1625716
- Sharma, S. (2016). Probability from a socio-cultural perspective. Statistics Education Research Journal, 15(2), 126-144. https://doi.org/10.52041/serj.v15i2.244
- Statistique Canada. (2013). Les compétences au Canada. Premiers résultats du Programme pour l’évaluation internationale des compétences des adultes (PEICA) (publication n° 89-555-X). https://www150.statcan.gc.ca/n1/fr/catalogue/89-555-X2013001
- Swiatkowski, W. et Carrier, A. (2020). There is nothing magical about Bayesian statistics: An introduction to epistemic probabilities in data analysis for psychology starters. Basic and Applied Social Psychology, 42(6), 387-412. https://doi.org/10.1080/01973533.2020.1792297
- Tversky, A. et Kahneman, D. (1982). Judgment under uncertainty: Heuristics and biases. Dans D. Kahneman, P. Slovic et A. Tversky (dir.), Judgment under uncertainty: Heuristics and biases (p. 3-20). Cambridge University Press. https://doi.org/10.1017/CBO9780511809477
- Ulusoy, Ç. A. et Altay, M. K. (2017). Analyzing the statistical reasoning levels of pre-service elementary school teachers in the context of a model eliciting activity. International Journal of Research in Education and Science (IJRES), 3(1), 20-30. https://eric.ed.gov/?id=EJ1126697