Abstracts
Abstract
Ten products, commercially available as biostimulants or reported for their biostimulating properties, were tested under conventional and organic growing systems for their effects on mustard microgreens (Brassica juncea) grown in presence of abiotic (salt) or biotic (Pythium ultimum) stress. Drench application of wollastonite (calcium silicate) significantly improved the germination rate of mustard seeds sown in a substrate inoculated with P. ultimum in conventional growing system exclusively. In both growing systems, no significant effect of biostimulants was observed on the dry biomass or the proportion of healthy microgreens grown in presence of P. ultimum. None of the biostimulants significantly increased the germination rate of seeds exposed to a salinity stress in both growing systems while humic acid, triacontanol, chitosan, and Bacillus subtilis PTB185 significantly decreased the germination rate of seeds exposed to 40, 80 or 120 mM NaCl L-1 under conventional or organic management. Seed treatment with Trichoderma harzianum T-22 and humic acid resulted in microgreens with a significantly higher dry biomass when subjected to 40 and 80 mM NaCl L-1 under conventional and organic management, respectively. The study showed that the effects of the biostimulants vary from beneficial to detrimental and that plant response to biostimulants is influenced by the cultivation conditions.
Keywords:
- biostimulants,
- microgreens,
- mustard,
- Pythium ultimum,
- salinity,
- stress
Résumé
Dix produits, disponibles commercialement comme biostimulants ou rapportés pour leurs propriétés biostimulantes, ont été testés sous une régie de culture conventionnelle ou biologique pour leurs effets sur les micropousses de moutarde (Brassica juncea) cultivées en présence d’un stress abiotique (sel) ou biotique (Pythium ultimum). Sous une régie conventionnelle, l’application au sol d’une solution de wollastonite (silicate de calcium) a significativement amélioré le taux de germination des graines de moutarde semées dans un substrat inoculé avec P. ultimum. Lorsque les micropousses étaient cultivées en présence de P. ultimum, aucun effet significatif des biostimulants n’a été observé sur la biomasse sèche des micropousses et la proportion de micropousses saines, et ce sous régie conventionnelle et biologique. Aucun biostimulant n’a augmenté significativement le taux de germination des semences soumises à un stress salin sous les deux régies de culture tandis que l’acide humique, le triacontanol, le chitosane et Bacillus subtilis PTB185 ont diminué significativement le taux de germination des graines exposées à 40, 80 ou 120 mM NaCl L-1 sous une régie conventionnelle ou biologique. Le traitement des semences avec Trichoderma harzianum T-22 et l’acide humique a résulté en une augmentation significative de la biomasse sèche des micropousses soumises à 40 et 80 mM NaCl L-1 sous une régie conventionnelle et biologique respectivement. Cette étude démontre que les biostimulants ont soit un effet bénéfique ou néfaste soit aucun effet et que la réponse des végétaux aux biostimulants est influencée par les conditions de culture.
Mots-clés :
- biostimulants,
- micropousses,
- moutarde,
- Pythium ultimum,
- salinité,
- stress
Appendices
References
- Abkhoo, J., and S.K. Sabbagh. 2016. Control of Phytophthora melonis damping-off, induction of defense responses, and gene expression of cucumber treated with commercial extract from Ascophyllum nodosum. J. Appl. Phycol. 28: 1333-1342. doi:10.1007/s10811-015-0693-3
- Avis, T.J., V. Gravel, H. Antoun, and R.J. Tweddell. 2008. Multifaceted beneficial effects of rhizosphere micro-organisms on plant health and productivity. Soil Biol. Biochem. 40: 1733-1740. doi:10.1016/j.soilbio.2008.02.013
- Bouchard-Rochette, M., Y. Machrafi, L. Cossus, T.T.A. Nguyen, H. Antoun, A. Droit, and R.J. Tweddell. 2022. Bacillus pumilus PTB180 and Bacillus subtilis PTB185: Production of lipopeptides, antifungal activity, and biocontrol ability against Botrytis cinerea. Biol. Control 170: 104925. doi:10.1016/j.biocontrol.2022.104925
- Bulgari, R., G. Franzoni, and A. Ferrante. 2019. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9: 306. doi:10.3390/agronomy9060306
- Clément, J., M. Delisle-Houde, T.T.A. Nguyen, M. Dorais, and R.J. Tweddell. 2023. Effect of biostimulants on leafy vegetables (baby leaf lettuce and batavia lettuce) exposed to abiotic or biotic stress under two different growing systems. Agronomy 13: 879. doi:10.3390/agronomy13030879
- Colla, G., S. Nardi, M. Cardarelli, A. Ertani, L. Lucini, R. Canaguier, and Y. Rouphael. 2015. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 196: 28-38. doi:10.1016/j.scienta.2015.08.037
- De Pascale, S., Y. Rouphael, and G. Colla. 2017. Plant bio-stimulants: innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 82: 277-285. doi:10.17660/eJHS.2017/82.6.2
- Dembele, D.M. 2021. Production de verdurettes biologiques : niveaux de fertilisation et biostimulants. Master’s thesis, Université Laval, Québec, QC, Canada.
- Dembele, D.M., T.T.A. Nguyen, A. Bregard, R. Naasz, F. Jobin-Lawler, C. Boivin, and M. Dorais. 2022. Effects of growing media and fertilization rates on the organic production of baby leafy vegetables. Acta Hortic. 1348: 141-154. doi:10.17660/ActaHortic.2022.1348.20
- du Jardin, P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196: 3-14. doi:10.1016/j.scienta.2015.09.021
- Franzoni, G., G. Cocetta, B. Prinsi, A. Ferrante, and L. Espen. 2022. Biostimulants on crops: their impact under abiotic stress conditions. Horticulturae 8: 189. doi:10.3390/horticulturae8030189
- Gómez, S., and C. Gómez. 2022. Evaluating the use of biostimulants for indoor hydroponic lettuce production. HortTechnology 32: 348-355. doi:10.21273/HORTTECH05045-22
- Grahn, C.M., C. Benedict, T. Thornton, and C. Miles. 2015. Production of baby-leaf salad greens in the spring and fall seasons of Northwest Washington. HortScience 50: 1467-1471. doi:10.21273/HORTSCI.50.10.1467
- Guinan, K.J., N. Sujeeth, R.B. Copeland, P.W. Jones, N.M. O’Brien, H.S.S. Sharma, P.F.J. Prouteau, and J.T. O’Sullivan. 2013. Discrete roles for extracts of Ascophyllum nodosum in enhancing plant growth and tolerance to abiotic and biotic stresses. Acta Hortic. 1009: 1-12. doi:10.17660/ActaHortic.2013.1009.15
- Gullino, M.L., G. Gilardi, and A. Garibaldi. 2019. Ready-to-eat salad crops: a plant pathogen’s heaven. Plant Dis. 103: 2153-2170. doi:10.1094/PDIS-03-19-0472-FE
- Hamza, B., and A. Suggars. 2001. Biostimulants: myths and realities. TurfGrass Trends 10: 6-10.
- Hernández-Ruiz, J., and M.B. Arnao. 2018. Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy 8: 33. doi:10.3390/agronomy8040033
- Li, J., T. Van Gerrewey, and D. Geelen. 2022. A meta-analysis of biostimulant yield effectiveness in field trials. Front. Plant Sci. 13: 836702. doi:10.3389/fpls.2022.836702
- Mir, S.A., M.A. Shah, and M.M. Mir. 2017. Microgreens: production, shelf life, and bioactive components. Crit. Rev. Food Sci. Nutr. 57: 2730-2736. doi:10.1080/10408398.2016.1144557
- Nanayakkara, U.N., W. Uddin, and L.E. Datnoff. 2008. Effects of soil type, source of silicon, and rate of silicon source on development of gray leaf spot of perennial ryegrass turf. Plant Dis. 92: 870-877. doi:10.1094/PDIS-92-6-0870
- Parađiković, N., T. Teklić, S. Zeljković, M. Lisjak, and M. Špoljarević. 2019. Biostimulants research in some horti-cultural plant species – A review. Food Energy Secur. 8: e00162. doi:10.1002/fes3.162
- Rose, M.T., A.F. Patti, K.R. Little, A.L. Brown, W.R. Jackson, and T.R. Cavagnaro. 2014. A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Pages 37-89 in D. Sparks (ed.), Advances in agronomy. Elsevier, Amsterdam, Netherlands. doi:10.1016/B978-0-12-800138-7.00002-4
- Rouphael, Y., and G. Colla. 2020. Editorial: biostimulants in agriculture. Front. Plant Sci. 11: 40. doi:10.3389/fpls.2020.00040
- Rouphael, Y., M. Cardarelli, P. Bonini, and G. Colla. 2017. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 8: 131. doi:10.3389/fpls.2017.00131
- Schroeder, K.L., F.N. Martin, A.W.A.M. de Cock, C.A. Lévesque, C.F.J. Spies, P.A. Okubara, and T.C. Paulitz. 2013. Molecular detection and quantification of Pythium species: evolving taxonomy, new tools, and challenges. Plant Dis. 97: 4-20. doi:10.1094/PDIS-03-12-0243-FE
- Sharma, H.S.S., C. Fleming, C. Selby, J.R. Rao, and T. Martin. 2014. Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 26: 465-490. doi:10.1007/s10811-013-0101-9
- Sharma, S., B. Shree, D. Sharma, S. Kumar, V. Kumar, R. Sharma, and R. Saini. 2022. Vegetable microgreens: the gleam of next generation super foods, their genetic enhancement, health benefits and processing approaches. Food Res. Int. 155: 111038. doi:10.1016/j.foodres.2022.111038
- Shukla, P.S., E.G. Mantin, M. Adil, S. Bajpai, A.T. Critchley, and B. Prithiviraj. 2019. Ascophyllum nodosum-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 10: 655. doi:10.3389/fpls.2019.00655
- Sofo, A., M. Nuzzaci, A. Vitti, G. Tataranni, and A. Scopa. 2014. Control of biotic and abiotic stresses in cultivated plants by the use of biostimulant microorganisms. Pages 107-117 in P. Ahmad, M.R. Wani, M.M. Azooz, and L.-S.P. Tran (eds.), Improvement of crops in the era of climatic changes. Springer, New York, NY, USA. doi:10.1007/978-1-4614-8830-9_5
- Subbarao, K.V., R.M. Davis, R.L. Gilbertson, and R.N. Raid. 2017. Infectious diseases. Pages 25-100 in K.V. Subbarao, R.M. Davis, R.L. Gilbertson, and R.N. Raid (eds.), Compendium of lettuce diseases and pests. The American Phytopathological Society, St. Paul, MN, USA. doi:10.1094/9780890545782.002
- Torlon, J.L., J.R. Heckman, J.E. Simon, and C.A. Wyenandt. 2016. Silicon soil amendments for suppressing powdery mildew on pumpkin. Sustainability 8: 293. doi:10.3390/su8040293
- Tziros, G.T., and G.S. Karaoglanidis. 2022. Molecular iden-tification and pathogenicity of Rhizoctonia solani and Pythium spp. associated with damping-off disease on baby leafy vegetables in Greece. Plant Pathol. 71: 1381-1391. doi:10.1111/ppa.13558
- van der Plaats-Niterink, A.J. 1981. Monograph of the genus Pythium. Centraalbureau voor Schimmelcultures, Baarn, Netherlands. 242 pp.
- Xu, C., and D.I. Leskovar. 2015. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci. Hortic. 183: 39-47. doi:10.1016/j.scienta.2014.12.004
- Yakhin, O.I., A.A. Lubyanov, I.A. Yakhin, and P.H. Brown. 2017. Biostimulants in plant science: a global perspective. Front. Plant Sci. 7: 2049. doi:10.3389/fpls.2016.02049