Abstracts
Abstract
Cyclamen mite (Phytonemus pallidus Banks) can be eliminated from strawberry (Fragaria × ananassa Duchesne) planting material when transplants are subjected to a controlled atmosphere temperature treatment (CATT) at 35 °C, 50% CO2 and 10% O2 under high relative humidity for 48 h. In our previous research, CATT reduced cyclamen mite numbers by 99.9%, but its effects on plant vigour were not assessed. The objective of this study was to assess the survival, yield and growth of different strawberry cultivars (‘Albion’, ‘Murano’, ‘Seascape’) and plant types (bareroot plants, trayplants) that received CATT before planting compared to untreated control plants. CATT slightly increased the risks of plant mortality, and plant losses were greater for trayplants than for bareroot plants. CATT resulted in increased runner production for ‘Albion’ transplants but caused no effects on other cultivars. Fruit yields were either unaffected or decreased by CATT, suggesting stimulation of vegetative rather than reproductive growth. Based on these results, disinfection of strawberry transplants using CATT would be more suitable for plants destined for propagation rather than for fruit production. Our research highlights the need to develop a universal and easily adoptable treatment effective against multiple pests and pathogens to produce clean strawberry transplants.
Keywords:
- Fragaria x ananassa,
- pest management,
- Phytonemus pallidus,
- runner production
Résumé
Le tarsonème du fraisier (Phytonemus pallidus Banks) peut être éliminé des transplants de fraisiers (Fragaria × ananassa Duchesne) soumis à un traitement de température en atmosphère contrôlée (CATT) à 35 °C, 50 % de CO2 et 10 % d’O2 sous une humidité relative élevée pendant 48 h. Dans notre recherche précédente, le traitement CATT a réduit le nombre de tarsonèmes du fraisier de 99,9 %, mais ses effets sur les plants n’ont pas été évalués. L’objectif de cette étude était d’évaluer l’effet du traitement CATT sur la survie, le rendement et la croissance de différents cultivars (‘Albion’, ‘Murano’, ‘Seascape’) et types de plants (plants à racines nues, trayplants). La mortalité après la plantation était plus grande pour les plants traités. Le traitement CATT a entraîné une augmentation de la production de stolons pour les transplants du cultivar ‘Albion’, mais n’a eu aucun effet sur les autres cultivars. Les rendements en fruits n’ont pas été affectés ou ont été diminués par le traitement CATT, ce qui suggère qu’il pourrait stimuler la croissance végétative aux dépens de la croissance reproductive. La désinfection des transplants de fraisiers à l’aide du traitement CATT conviendrait donc mieux aux plantes destinées à la multiplication plutôt qu’à la production de fruits.
Mots-clés :
- Fragaria x ananassa,
- lutte antiparasitaire,
- Phytonemus pallidus,
- production de stolons
Appendices
References
- Albregts, E.E., C.M. Howard, and C.K. Chandler. 1992. Defoliation of strawberry transplants for fruit production in Florida. HortScience 27: 889-891. doi:10.21273/HORT SCI.27.8.889
- Alford, D.V. 2007. Pests of fruit crops: A colour handbook. CRC Press, London, UK. 480 pp.
- Bernier, V., N. Lefebvre, M. Khelifi, J. Renkema, and V. Fournier. 2023. Control of Phytonemus pallidus (Acari: Tarsonemidae) from strawberry transplants using controlled atmosphere temperature treatment. J. Econ. Entomol. 116: 1560-1566.
- Box, G.E.P., and D.R. Cox. 1964. An analysis of transformations. J. R. Stat. Soc. Series B Methodol. 26: 211-243.
- Brown, R., H. Wang, M. Dennis, J. Slovin, and W.W. Turechek. 2016. The effects of heat treatment on the gene expression of several heat shock protein genes in two cultivars of strawberry. Int. J. Fruit Sci. 16: 239-248.
- Buchner, R.P. 1991. Hot water preplant dip for strawberry disease control. Pages 217-218 in A. Dale, and J. Luby (eds.), The strawberry into the 21st Century. Timber Press, Portland, OR, USA.
- Daugaard, H., and H. Lindhard. 2007. Physiological effects of phytosanitary hot-water treatment of strawberry frigo plants. Eur. J. Hortic. Sci. 72: 262-267. Available online [https://www.pubhort.org/ejhs/2007/file_491535.pdf].
- Davis, M.B., and D.S. Blair. 1951. Le fraisier et sa culture au Canada. Ministère de l’Agriculture, Ottawa, CA. 60 pp. Available online [https://publications.gc.ca/collections/collection_2015/aac-aafc/A43-621-1951-fra.pdf].
- Durner, E.F., J.A. Barden, D.G. Himelrick, and E.B. Poling. 1984. Photoperiod and temperature effects on flower and runner development in day-neutral, Junebearing, and everbearing strawberries. J. Am. Soc. Hortic. Sci. 109: 396-400.
- Durner, E.F., E.B. Poling, and J.L. Maas. 2002. Recent advances in strawberry plug transplant technology. HortTechnology 12: 545-550.
- Easterbrook, M.A., J.D. Fitzgerald, and M.G. Solomon. 2001. Biological control of strawberry tarsonemid mite Phytonemus pallidus and two-spotted spider mite Tetranychus urticae on strawberry in the UK using species of Neoseiulus (Amblyseius) (Acari: Phytoseiidae). Exp. Appl. Acarol. 25: 25-36. doi:10.1023/A:1010685903130
- Fitzgerald, J.D., X. Xu, N. Pepper, M.A. Easterbrook, and M.G. Solomon. 2008. The spatial and temporal distribution of predatory and phytophagous mites in field-grown strawberry in the UK. Exp. Appl. Acarol. 44: 293-306.
- Fountain, M.T., and J.V. Cross. 2018. Tarsonemid mite on strawberry. [https://archive.ahdb.org.uk/knowledge-library/tarsonemid-mite-on-strawberry].
- Fountain, M.T., A.L. Harris, and J.V. Cross. 2010. The use of surfactants to enhance acaricide control of Phytonemus pallidus (Acari: Tarsonemidae) in strawberry. Crop Prot. 29: 1286-1292.
- Gambardella, M., F. Massetani, and D. Neri. 2016. Plant propagation techniques and types of plants. Pages 139-156 in A.M. Husaini, and D. Neri (eds.), Strawberry: growth, development and diseases. CABI, Wallingford, UK.
- Giménez, G., J.L. Andriolo, D. Janisch, C. Cocco, and M. Dal Picio. 2009. Cell size in trays for the production of strawberry plug transplants. Pesq. Agropec. Bras. 44: 726-729.
- Gobin, B., and E. Bangels. 2008. Field control of strawberry mite Phytonemus pallidus. IOBC/WPRS Bull. 39: 97-100.
- Gong, Y.-J., L.-J. Cao, Z.-H. Wang, X.-Y. Zhou, J.-C. Chen, A.A. Hoffmann, and S.-J. Wei. 2018. Efficacy of carbon dioxide treatments for the control of the two-spotted spider mite, Tetranychus urticae, and treatment impact on plant seedlings. Exp. Appl. Acarol. 75: 143-153.
- Gulen, H., and A. Eris. 2004. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci. 166: 739-744.
- Gulen, H., E. Turhan, and A. Eris. 2016. Molecular and physiological responses of strawberry plants to abiotic stress. Pages 288-311 in A.M. Husaini, and D. Neri (eds.), Strawberry: growth, development and diseases. CABI, Wallingford, UK.
- Hellqvist, S. 2002. Heat tolerance of strawberry tarsonemid mite Phytonemus pallidus. Ann. Appl. Biol. 141: 67-71.
- Hytönen, T., and T. Kurokura. 2020. Control of flowering and runnering in strawberry. Hort. J. 89: 96-107.
- Jeppson, L.R., H.H. Keifer, and E.W. Baker. 1975. Mites injurious to economic plants. University of California Press, Los Angeles, CA, USA.
- Kerkhoff, K.L., J.M. Williams, and J.A. Barden. 1988. Net photosynthetic rates and growth of strawberry after partial defoliation. HortScience 23: 1086-1088.
- Kesici, M., H. Gulen, S. Ergin, E. Turhan, A. Ipek, and N. Koksal. 2013. Heat-stress tolerance of some strawberry (Fragaria × ananassa) cultivars. Not. Bot. Horti. Agrobot. Cluj-Napoca 41: 244-249.
- Lenth, R.V. 2023. emmeans: Estimated marginal means, aka least-squares means. R package version 1.8.7. Available online [https://CRAN.R-project.org/package=emmeans].
- MacLachlan, J.B., and J.J. Duggan. 1979. An effective method for hot-water treatment and propagation of strawberry runners. Iris J. Agric. Res. 18: 301-304.
- Mitcham, E., T. Martin, and S. Zhou. 2006. The mode of action of insecticidal controlled atmospheres. Bull. Entomol. Res. 96: 213-222.
- Neven, L., and S. Johnson. 2017. Combination of hot forced air treatments and controlled atmosphere treatments: CATT - Controlled Atmosphere Temperature Treatment System. Pages 259-288 in S. Pareek (ed.), Novel postharvest treatments of fresh produce. CRC Press, Boca Raton, FL, USA.
- Patenaude, S., S. Tellier, and V. Fournier. 2020. Cyclamen mite (Acari: Tarsonemidae) monitoring in eastern Canada strawberry (Rosaceae) fields and its potential control by the predatory mite Neoseiulus cucumeris (Acari: Phytoseiidae). Can. Entomol. 152: 249-260.
- Pinheiro, J., D. Bates, and R Core Team. 2023. nlme: Linear and nonlinear mixed effects models. R package version 3.1-162. Available online [https://CRAN.R-project.org/pa ckage=nlme].
- Qiu, J., B.B. Westerdahl, R.P. Buchner, and C.A. Anderson. 1993. Refinement of hot water treatment for management of Aphelenchoides fragariae in strawberry. J. Nematol. 25: 795-799.
- R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online [https://www.r-project.org/].
- Serçe, S., and J.F. Hancock. 2005. The temperature and photoperiod regulation of flowering and runnering in the strawberries, Fragaria chiloensis, F. virginiana, and F. x ananassa. Sci. Hortic. 103: 167-177.
- Smith, L.M., and E.V. Goldsmith. 1936. The cyclamen mite, Tarsonemus pallidus, and its control on field strawberries. Hilgardia 10: 53-94.
- Sokal, R.R., and F.J. Rohlf. 1994. Biometry: The principles and practice of statistics in biological research. W.H. Freeman, New York, NY, USA.
- Staniland, L.N. 1953. Hot‐water treatment of strawberry runners. Plant Pathol. 2: 44-48.
- Stenseth, C., and A.L.F. Nordby. 1976. Damage, and control of the strawberry mite Steneotarsonemus pallidus (Acarina: Tarsonemidae), on strawberries. J. Hortic. Sci. 51: 49-24.
- Tuovinen, T., and I. Lindqvist. 2010. Maintenance of predatory phytoseiid mites for preventive control of strawberry tarsonemid mite Phytonemus pallidus in strawberry plant propagation. Biol. Control 54: 119-125.
- Turechek, W.W., and N.A. Peres. 2009. Heat treatment effects on strawberry plant survival and angular leaf spot, caused by Xanthomonas fragariae, in nursery production. Plant Dis. 93: 299-308.
- Turechek, W.W., S. Wang, G. Tiwari, and N.A. Peres. 2013. Investigating alternative strategies for managing bacterial angular leaf spot in strawberry nursery production. Int. J. Fruit Sci. 13: 234-245.
- van Kruistum, G., H. Hoek, J. Verschoor, and L. Molendijk. 2012. Controlled Atmosphere Temperature Treatment as sustainable alternative to control strawberry tarsonemid mites and plant parasitic nematodes in strawberry plants. Acta Hortic. 926: 601-608.
- van Kruistum, G., J. Verschoor, and H. Hoek. 2014. CATT as a non-chemical pest and nematode control method in strawberry mother planting stock. J. Berry Res. 4: 29-35.
- Verschoor, J.A., E.C. Otma, Y.T. Qiu, G. van Kruistum, and J. Hoek. 2015. Controlled Atmosphere Temperature Treatment: Non-chemical (quarantine) pest control in fresh plant products. Acta Hortic. 1071: 253-257.
- Zhang, Z.-Q. 2003. Mites of greenhouses: Identification, biology and control. CABI Publishing, Wallingford, UK. doi:10.1079/9780851995908.0000