Abstracts
Abstract
Tetranychus urticae Koch (two-spotted spider mite) is an agricultural pest with a host range of over 1100 species of plants. Tetranychus urticae has rapidly developed resistance to a variety of synthetic chemical pesticides due to its high fecundity and short generation time. Plant essential oils have been recognized as a novel natural source of pest control that have a reduced impact to the environment and human health compared to synthetic pesticide application, and which may provide a viable alternative for managing T. urticae. The present study assessed the potential of a plant-derived product (product 102) as an acaricide, through topical and residual bioassays on a variety of plant species including common bean plant (Phaseolus vulgaris L.), lettuce (Lactuca sativa L.), tomato (Solanum lycopersicum L.), kale (Brassica oleracea L.), cucumber (Cucumis sativus L.), hops (Humulus lupulus L.) and hemp (Cannabis sativa L.). The results of our study indicate that C. sativa is not a suitable plant to host T. urticae. Product 102 was determined to be effective at preventing the growth of two known fungal species of economic concern (Cladosporium herbarum Persoon and Botrytis cinerea Persoon). By conducting acute contact toxicity tests, we also determined that product 102 is significantly less toxic to Bombus impatiens Cresson compared to the commonly used synthetic insecticide imidacloprid.
Keywords:
- bumblebees,
- essential oils,
- fungicide,
- topical toxicity,
- two-spotted spider mite
Résumé
Tetranychus urticae Koch (tétranyque à deux points) est un ravageur agricole ayant plus de 1100 espèces de plantes hôtes. Tetranychus urticae a rapidement développé une résistance à une variété de pesticides chimiques synthétiques en raison de sa fécondité élevée et de son temps de génération court. Les huiles essentielles de plantes ont été reconnues comme une nouvelle source naturelle de lutte contre les ravageurs ayant un impact moindre sur l’environnement et la santé humaine par rapport à l’application de pesticides synthétiques, et qui peuvent constituer une alternative viable pour lutter contre T. urticae. La présente étude a évalué le potentiel d’un produit dérivé d’une plante (produit 102) en tant qu’acaricide, par le biais d’essais biologiques topiques et résiduels sur une variété d’espèces végétales, y compris le haricot commun (Phaseolus vulgaris L.), la laitue (Lactuca sativa L.), la tomate (Solanum lycopersicum L.), le chou (Brassica oleracea L.), le concombre (Cucumis sativus L.), le houblon (Humulus lupulus L.) et le chanvre (Cannabis sativa L.). Les résultats de notre étude indiquent que C. sativa n’est pas une plante appropriée pour T. urticae. Le produit 102 s’est avéré efficace pour empêcher la croissance de deux espèces fongiques connues et préoccupantes sur le plan économique (Cladosporium herbarum Persoon et Botrytis cinerea Persoon). En effectuant des tests de toxicité aiguë par contact, nous avons également déterminé que le produit 102 est significativement moins toxique pour Bombus impatiens Cresson que l’insecticide synthétique couramment utilisé, l’imidaclopride.
Mots-clés :
- bourdons,
- huiles essentielles,
- fongicide,
- toxicité topique,
- tétranyque à deux points
Appendices
References
- Arras, G., and M. Usai. 2001. Fungitoxic activity of 12 essential oils against four postharvest citrus pathogens: chemical analysis of thymus capitatus oil and its effect in subatmospheric pressure conditions. J. Food Prot. 64: 1025-1029.
- Arthur, R. 2005. Damp indoor spaces and health. Institute of Medicine: Committee on Damp Indoor Spaces and Health. The National Academy Press. ISBN 0-309-09193-4. Washington, D.C. 2004, pp. 355. J. Public Health 27: 234.
- Bakkali, F., S. Averbeck, D. Averbeck, and M. Idaomar. 2008. Biological effects of essential oils – a review. Food Chem. Toxicol. 46: 446-475.
- Bensoussan, N., V. Zhurov, S. Yamakawa, C.H. O’Neil, T. Suzuki, M. Grbić, and V. Grbić. 2018. The digestive system of the two-spotted spider mite, Tetranychus urticae Koch, in the context of the mite-plant interaction. Front. Plant Sci. 9: 1206.
- Bird, C., S. Balshaw, and W. Anderson. 2012. Getting the best answer by asking the right question – case studies in occupational exposure to mould. J. Health Saf. Res. Pract. 4: 19-27.
- Bonmatin, J.-M., C. Giorio, V. Girolami, D. Goulson, D.P. Kreutzweiser, C. Krupke, M. Liess, E. Long, M. Marzaro, E.A.D. Mitchell, D.A. Noome, N. Simon-Delso, and A. Tapparo. 2015. Environmental fate and exposure; neoni-cotinoids and fipronil. Environ. Sci. Pollut. Res. 22: 35-67.
- Bouchra, C., M. Achouri, L.M. Idrissi Hassani, and M. Hmamouchi. 2003. Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. J. Ethnopharmacol. 89: 165-169. doi:10.1016/S0378-8741(03)00275-7
- Carvalho, D.D.C., S.C.M. de Mello, M. Lobo Júnior, and A.M. Geraldine. 2011. Biocontrol of seed pathogens and growth promotion of common bean seedlings by Trichoderma harzianum. Pesq. Agropec. Bras. 46: 822-828. doi:10.159 0/S0100-204X2011000800006
- Ceylan, E., and D.Y.C. Fung. 2004. Antimicrobial activity of spices. J. Rapid Methods Autom. Microbiol. 12: 1-55.
- Codling, G., Y. Al Naggar, J.P. Giesy, and A.J. Robertson. 2016. Concentrations of neonicotinoid insecticides in honey, pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada. Chemosphere 144: 2321–2328.
- Curtis, O.F., K. Shetty, G. Cassagnol, and M. Peleg. 1996. Comparison of the inhibitory and lethal effects of synthetic versions of plant metabolites (anethole, carvacrol, eugenol, and thymol) on a food spoilage yeast (Debaromyces hansenii). Food Biotechnol. 10: 55-73.
- Dermauw, W., N. Wybouw, S. Roumbauts, B. Menten, J. Vontas, M. Grbić, R.M. Clark, R. Feyereisen, and T. Van Leeuwen. 2013. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae. Proc. Natl. Acad. Sci 110: E113-E122.
- Dhingra, O.D., C.B. Maia, D.C. Lustosa, and J.B. Mesquita. 2002. Seedborne pathogenic fungi that affect seedling quality of red angico (Anadenanthera macrocarpa) trees in Brazil. J. Phytopathol. 150: 451-455.
- Elmer, P.A.G., and T. Reglinski. 2006. Biosuppression of Botrytis cinerea in grapes. Plant Pathol. 55: 155-177.
- Fairbrother, A., J. Purdy, T. Anderson, and R. Fell. 2014. Risks of neonicotinoid insecticides to honeybees. Environ. Toxicol. Chem. 33: 719-731. doi:10.1002%2Fetc.2527
- Fierascu, R.C., I.C. Fierascu, C.E. Dinu-Pirvu, I. Fierascu, and A. Paunescu. 2020. The application of essential oils as a next-generation of pesticides: recent developments and future perspectives. Z. Naturforsch. C 75: 183-204.
- Fry, J.D. 1989. Evolutionary adaptation to host plants in a labo-ratory population of the phytophagous mite Tetranychus urticae Koch. Oecologia 81: 559-565.
- Futuyma, D.J., and S.C. Peterson. 1985. Genetic variation in the use of resources by insects. Annu. Rev. Entomol. 30: 217-238.
- Gonzalez, M.F., F. Magdama, L. Galarza, D. Sosa, and C. Romero. 2020. Evaluation of the sensitivity and synergistic effect of Trichoderma reesei and mancozeb to inhibit under in vitro conditions the growth of Fusarium oxysporum. Commun. Integr. Biol. 13: 160-169.
- Górski, R., K. Sobieralski, and M. Siwulski. 2016. The effect of hemp essential oil on mortality Aulacorthum solani Kalt. And Tetranychus urticae Koch. Ecol. Chem. Eng. S 23: 505-511.
- Gould, F. 1979. Rapid host range evolution in a population of the phytophagous mite Tetranychus urticae Koch. Evolution 33: 791-802. doi:10.2307/2407646
- Grbic, M., A. Khila, K.-Z. Lee, A. Bjelica, V. Grbic, J. Whistlecraft, L. Verdon, M. Navajas, and L. Nagy. 2007. Mity model: Tetranychus urticae, a candidate for chelicerate model organism. BioEssays 29: 489-496.
- He, L., Y. Liu, A. Mustapha, and M. Lin. 2011. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 166: 207-215.
- Hector, R.F. 1993. Compounds active against cell walls of medically important fungi. Clin. Microbiol. Rev. 6: 1-21. doi:10.1128%2Fcmr.6.1.1
- Hu, Q.-Q., X.-Y. Yu, X.-F. Xue, X.-Y. Hong, J.-P. Zhang, and J.-T.Sun. 2022. Phylogenetic-related divergence in perceiving suitable host plants among five spider mites species (Acari: Tetranychidae). Insects 13: 705.
- Isman, M.B. 2000. Plant essential oils for pest and disease management. Crop Prot. 19: 603-608. doi:10.1016/S0261-2194(00)00079-X
- Isman, M.B. 2006. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 51: 45-66.
- Isman, M.B., and C.M. Machial. 2006. Pesticides based on plant essential oils: from traditional practice to comer-cialization. Pages 29-44 in M. Rai and M.C. Carpinella (eds.), Advances in phytomedicine, Elsevier. doi:10.1016/S1572-557X(06)03002-9
- Kim, J., M.R. Marshall, and C.-I Wei. 1995. Antibacterial activity of some essential oil components against five foodborne pathogens. J. Agric. Food Chem. 43: 2839-2845.
- Klein, A.-M., B.E. Vaissière, J.H. Cane, I. Steffan-Dewenter, S.A. Cunningham, C. Kremen, and T. Tscharntke. 2006. Importance of pollinators in changing landscapes for world crops. Proc. Royal Soc. B 274: 303-313.
- Kostanda, E., and S. Khatib. 2022. Biotic stress caused by Tetranychus urticae mites elevates the quantity of secondary metabolites, cannabinoids and terpenes, in Cannabis sativa L. Ind. Crops Prod. 176: 114331.
- Leroux, P. 2007. Chemical control of Botrytis and its resistance to chemical fungicides. Pages 195-222 in Y. Elad, B. Williamson, P. Tudzynski, and N. Delen (eds.), Botrytis: biology, pathology and control. Springer, Dordrecht, Netherlands.
- Levinskaitė, L., and A. Paškevičius. 2013. Fungi in water-damaged buildings of Vilnius old city and their suscep-tibility towards disinfectants and essential oils. Indoor Built Environ. 22: 766-775.
- Lv, F., H. Liang, Q. Yuan, and C. Li. 2011. In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res. Int. 44: 3057-3064.
- MacPortland, J.M. 1997. Cannabis as repellent and pesticide. J. Int. Hemp Assoc. 4: 87-92.
- Marletto, F., A. Patetta, and A. Manino. 2003. Laboratory assessment of pesticide toxicity to bumblebees. Bull. Insectology 56: 155-158.
- Matos, W.B., A.C.C. Santos, A.P.S. Lima, E.D.R. Santana, J.E. Silva, A.F. Blank, A.P.A. Araújo, and L. Bacci. 2021. Potential source of ecofriendly insecticides: essential oil induces avoidance and cause lower impairment on the activity of a stingless bee than organosynthetic insecticides, in laboratory. Ecotoxicol. Environ. Saf. 209: 111764.
- Medrzycki, P., H. Giffard, P. Aupinel, L.P. Belzunces, M.-P. Chauzat, C. Claßen, M.E. Colin, T. Dupont, V. Girolami, R. Johnson, Y. Le Conte, J. Lückmann, M. Marzaro, J. Pistorius, C. Porrini, A. Schur, F. Sgolastra, N. Simon-Delso, J.J.M. van der Steen, K. Wallner, C. Alaux, D.G. Biron, N. Blot, G. Bogo, J.-L. Brunet, F. Delbac, M. Diogon, H. El Alaoui, B. Provost, S. Tosi, and C. Vidau. 2013. Standard methods for toxicology research in Apis mellifera. J. Apic. Res. 52: 1-60.
- Nevalainen, A., M. Täubel, and A. Hyvärinen. 2015. Indoor fungi: companions and contaminants. Indoor Air 25: 125-156.
- Park, Y.-L., and J.-H. Lee. 2002. Leaf cell and tissue damage of cucumber caused by two spotted spider mite (Acari: Tetranychidae). J. Econ. Entomol. 95: 952-957.
- Pinto, E., L. Vale-Silva, C. Cavaleiro, and L. Salgueiro. 2009. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 58: 1454-1462.
- Raveau, R., J. Fontaine, and A. Lounès-Hadj Sahraoui. 2020. Essential oils as potential alternative biocontrol products against plant pathogens and weeds: a review. Foods 9: 365.
- Regnault-Roger, C., C. Vincent, and J.T. Arnason. 2012. Essential oils in insect control: low-risk products in a high-stakes world. Annu. Rev. Entomol. 57: 405-424.
- Rothschild, M., and J.W. Fairbairn. 1980. Ovipositing butterfly (Pieris brassicae L.) distinguishes between aqueous extracts of two strains of Cannabis sativa L. and THC and CBD. Nature 286: 56-59.
- Samson, R.A., E.S. Hoekstra, J.C. Frisvad, and O. Filtenborg. 2000. Introduction to food- and airborne fungi. Centraal-bureau voor Schimmelcultures, Utrecht, Netherlands. 389 pp.
- Shao, X., S. Cheng, H. Wang, D. Yu, and C. Mungai. 2013. The possible mechanism of antifungal action of tea tree oil on Botrytis cinerea. J. Appl. Microbiol. 114: 1642-1649.
- Singh, T., and C. Chittenden. 2010. Efficacy of essential oil extracts in inhibiting mould growth on panel products. Build. Environ. 45: 2336-2342.
- Tripathi, A.K., S. Upadhyay, M. Bhuiyan, and P.R. Bhattacharya. 2009. A review on prospects of essential oils as biopesticide in insect-pest management. J. Pharmacogn. Phytotherapy 1: 52-63.
- Tripathi, P., N.K. Dubey, and A.K. Shukla. 2008. Use of some essential oils as post-harvest botanical fungicides in the management of grey mould of grapes caused by Botrytis cinerea. World J. Microbiol. Biotechnol. 24: 39-46.
- Verma, R.K., L. Chaurasia, and M. Kumar. 2011. Antifungal activity of essential oils against selected building fungi. Indian J. Nat. Prod. Resour. 2: 448-451.
- Via, S. 1990. Ecological genetics and host adaptation in herbivorous insects: the experimental study of evolution in natural and agricultural systems. Annu. Rev. Entomol. 35: 421-446.
- Whiley, H., S. Gaskin, T. Schroder, and K. Ross. 2018. Anti-fungal properties of essential oils for improvement of indoor air quality: a review. Rev. Environ. Health 33: 63-76.
- Xu, D., Y. He, Y. Zhang, W. Xie, Q. Wu, and S. Wang. 2018. Status of pesticide resistance and associated mutations in the two-spotted spider mite, Tetranychus urticae, in China. Pestic. Biochem. Physiol. 150: 89-96.
- Yamada, T., K. Yamada, and N. Wada. 2012. Influence of dinotefuran and clothianidin on a bee colony. Jpn. J. Clin. Oncol. 21: 10-23.