Abstracts
Abstract
Plants develop defence mechanisms in response to abiotic and biotic stresses that can have both negative and positive effects. Tomatoes grown in the field are normally exposed to abiotic stresses such as high temperatures and water shortages, as well as biotic stresses such as tomato yellow leaf curl virus (TYLCV), which greatly reduces productivity in this crop. In this study, two TYLCV Korean isolates were used as molecular and physiological tools to identify interactions between TYLCV infection and drought tolerance in tomato. The tomatoes were inoculated by TYLCV-infectious clones and exposed to drought stress, which led to wilted leaves on plants in the mock group, while those on TYLCV-inoculated plants showed no significant drought symptoms. Moreover, the average relative water content (RWC) was higher in TYLCV-infected plants than in the mock group, and genes associated to drought tolerance were pre-activated in well-watered tomato plants. These results confirm that TYLCV infection enhance drought tolerance in tomato plants and pre-inoculation with symptomless TYLCV isolates can be applied to tomato plants before being cultivated in water-deficit regions.
Keywords:
- tomato yellow leaf curl virus,
- infectious clone,
- drought stress,
- drought tolerance,
- plant-virus interaction
Résumé
Les plantes développent des mécanismes de défense en réponse à des stress abiotiques et biotiques qui peuvent avoir des effets négatifs et positifs. Les tomates cultivées en champ sont habituellement exposées à des stress abiotiques tels que des températures élevées et des pénuries d’eau, ainsi qu’à des stress biotiques tels que le virus des feuilles jaunes en cuillère de la tomate (TYLCV), ce qui réduit grandement la productivité de cette culture. Dans cette étude, deux isolats coréens du TYLCV ont été utilisés comme outils moléculaires et physiologiques pour identifier les interactions entre l’infection au TYLCV et la tolérance à la sécheresse chez la tomate. Les tomates ont été inoculées par des clones infectés au TYLCV et exposées à un stress de sécheresse qui a conduit à des feuilles flétries sur les plantes du groupe simulé, alors que celles des plantes inoculées au TYLCV n’ont présenté aucun symptôme significatif de sécheresse. De plus, la teneur relative moyenne en eau était plus élevée chez les plants infectés par le TYLCV que chez les plants simulés, et les gènes associés à la tolérance à la sécheresse étaient préactivés chez les plants de tomates bien arrosés. Ces résultats confirment que l’infection par le TYLCV augmente la tolérance à la sécheresse chez les plants de tomates et que la préinoculation avec des isolats de TYLCV sans symptômes peut être appliquée aux plants de tomates ayant été cultivés dans des régions déficitaires en eau.
Mots-clés :
- virus des feuilles jaunes en cuillère de la tomate,
- clone infectieux,
- stress hydrique,
- tolérance à la sécheresse,
- interaction plante-virus
Appendices
References
- Achuo, E.A., E. Prinsen, and M. Höfte. 2006. Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol. 55: 178-186.
- Alazem, M., and N.-S. Lin. 2017. Antiviral roles of abscisic acid in plants. Frontiers Plant Sci. 8: 1760.
- Arbona, V., M.G. Ximénez-Embún, A. Echavarri-Muñoz, M. Martin-Sánchez, A. Gómez-Cadenas, F. Ortego, and M. González-Guzmán. 2020. Early molecular responses of tomato to combined moderate water stress and tomato red spider mite Tetranychus evansi attack. 9: 1131.
- Atkinson, N.J., C.J. Lilley, and P.E. Urwin. 2013. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 162: 2028-2041.
- Cao, M., P. Lan, F. Li, J. Abad, C. Zhou, and R. Li. 2017. Genome characterization of sweet potato symptomless virus 1: a mastrevirus with an unusual nonanucleotide sequence. Arch. Virol. 162: 2881-2884.
- Cohen, S.P., and J.E. Leach. 2019. Abiotic and biotic stresses induce a core transcriptome response in rice. Sci. Rep. 9: 6273.
- Corrales-Gutierrez, M., L. Medina-Puche, Y. Yu, L. Wang, X. Ding, A.P. Luna, E.R. Bejarano, A.G. Castillo, and R. Lozano-Duran. 2020. The C4 protein from the geminivirus tomato yellow leaf curl virus confers drought tolerance in Arabidopsis through an ABA-independent mechanism. Plant Biotechnol. J. 18: 1121-1123.
- Du, M., Q. Zhai, L. Deng, S. Li, H. Li, L. Yan, Z. Huang, B. Wang, H. Jiang, T. Huang, C.-B. Li, J. Wei, L. Kang, J. Li, and C. Li. 2014. Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. Plant Cell 26: 3167-3184.
- Feng, K., J.-X. Liu, G.-M. Xing, S. Sun, S. Li, A.-Q. Duan, F. Wang, M.-Y. Li, Z.-S. Xu, and A.-S. Xiong. 2019. Selection of appropriate reference genes for RT-qPCR analysis under abiotic stress and hormone treatment in celery. PeerJ 7: e7925.
- Golldack, D., C. Li, H. Mohan, and N. Probst. 2014. Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front. PLant Sci. 5: 151.
- González, L., and M. González-Vilar. 2001. Determination of relative water content. Pages 207-212 in M.J. Reigosa Roger (ed.), Handbook of plant ecophysiology techniques. Springer, Dordrecht, Netherlands.
- Gull, A., A.A. Lone, and N.U.I. Wani. 2019. Biotic and abiotic stresses in plants. In A.B. de Oliveira (ed.), Abiotic and biotic stress in plants. InTech.
- Hanley-Bowdoin, L., E.R. Bejarano, D. Robertson, and S. Mansoor. 2013. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat. Rev. Microbiol. 11: 777-788.
- He, R., Y. Zhuang, Y. Cai, C.B. Agüero, S. Liu, J. Wu, S. Deng, M.A. Walker, J. Lu, and Y. Zhang. 2018. Overexpression of 9-cis-epoxycarotenoid dioxygenase cisgene in grapevine increases drought tolerance and results in pleiotropic effects. Front. Plant Sci. 9: 970.
- Hosseinpour, N.A., and G.H. Nematadeh. 2013. Introducing a new method of genomic DNA extraction in dicotyle-donous plants. Scholarly J. Agric. Sci. 2: 242-248.
- Huang, J., A. Levine, and Z. Wang. 2013. Plant abiotic stress. Sci. World J. 2013: 432836.
- Jenks, M.A., and P.M. Hasegawa. 2005. Plant abiotic stress. Blackwell Publishing, Oxford, UK. 290 pp.
- Kil, E.-J., H.-S. Byun, S. Kim, H. Hwang, M.-K. Kim, C.-S. Kim, H.-S. Choi, K.-Y. Lee, and S. Lee. 2014. First report of tomato yellow leaf curl virus infecting Eustoma (Eustoma grandiflorum) in Korea. Plant Dis. 98: 1163.
- Kil E.-J., S. Kim, Y.-J. Lee, H.-S. Byun, J. Park, H. Seo, C.-S. Kim, J.-K. Shim, J.-H. Lee, J.-K. Kim, K.-Y. Lee, H.-S. Choi, and S. Lee. 2016. Tomato yellow leaf curl virus (TYLCV-IL): a seed-transmissible geminivirus in tomatoes. Sci. Rep. 6: 19013.
- Király, L., Y.M. Hafez, J. Fodor, and Z. Király. 2008. Suppression of tobacco mosaic virus-induced hypersensitive-type necrotization in tobacco at high temperature is associated with downregulation of NADPH oxidase and superoxide and stimulation of dehydroascorbate reductase. J. Gen. Vir. 89: 799-808.
- Kissoudis, C., R. Chowdhury, S. van Heusden, C. van de Wiel, R. Finkers, R.G.F. Visser, Y. Bai, and G. van der Linden. 2015. Combined biotic and abiotic stress resistance in tomato. Euphytica 202: 317-332.
- Kwak, H.-R., M.-K. Kim, G.-S. Lee, C.-S. Kim, M.-J. Kim, J.-D. Kim, S.-H. Lee, J.-S. Kim, S.-C. Lee, and H.-S. Choi. 2008. Molecular characterization of tomato yellow leaf curl virus (TYLCV) isolated firstly in Korea. Res. Plant Dis. 24: 238.
- Lapidot, M., M. Friedmann, O. Lachman, A. Yehezkel, S. Nahon, S. Cohen, and M. Pilowsky. 1997. Comparison of resistance level to tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis. 81: 1425-1428.
- Lee, H.-J., J.-A. Park, C.-K. Auh, K.-Y. Lee, C.-S. Kim, G.-S. Lee, H.-C. Soh, H.-S. Choi, and S.-C. Lee. 2011. Molecular evidence of recombination on Korean isolates of tomato yellow leaf curl virus by nucleotide transversions and transitions. Plant Pathol. J. 27: 378-384.
- Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402-408.
- Long, H., Z. Zheng, Y. Zhang, P. Xing, X. Wan, Y. Zheng, and L. Li. 2019. An abscisic acid (ABA) homeostasis regulated by its production, catabolism and transport in peanut leaves in response to drought stress. PLoS One 14: e0213963.
- McElrone, A.J., J.L. Sherald, and I.N. Forseth. 2003. Interactive effects of water stress and xylem-limited bacterial infection on the water relations of a host vine. J. Exp. Bot. 54: 419-430.
- Melotto, M., W. Underwood, and S.Y. He. 2008. Role of stomata in plant innate immunity and foliar bacterial diseases. Annu. Rev. Phytopathol. 46: 101-122.
- Muñoz-Espinoza, V.A., M.F. López-Climent, J.A. Casaretto, and A. Gómez-Cadenas. 2015. Water stress responses of tomato mutants impaired in hormone biosynthesis reveal abscisic acid, jasmonic acid and salicylic acid interactions. Front. Plant Sci. 6: 997.
- Olvera-Carrillo, Y., J.L. Reyes, and A.A. Covarrubias. 2011. Late embryogenesis abundant proteins: versatile players in the plant adaptation to water limiting environments. Plant Signal Behav. 6: 586-589.
- Pakkianathan, B.C., and M. Ghanim. 2014. Recent advances on interactions between the whitefly Bemisia tabaci and begomoviruses, with emphasis on tomato yellow leaf curl virus. Pages 79-103 in R.K. Gaur, T. Hohn, and P. Sharma (eds.), Plant virus-host interaction: molecular approaches and viral evolution. Academic Press, Oxford, UK.
- Prasad, A., N. Sharma, G. Hari-Gowthem, M. Muthamilarasan, and M. Prasad. 2020. Tomato yellow leaf curl virus: impact, challenges, and management. Trends Plant Sci. 25: 897-911.
- Ramegowda, V., and M. Senthil-Kumar. 2015. The interactive effects of simultaneous biotic and abiotic stresses onplants: mechanistic understanding from drought and pathogen combination. J. Plant Physiol. 176: 47-54.
- Rejeb, I.B., V. Pastor, and B. Mauch-Mani. 2014. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3: 458-475.
- Rodriguez-Negrete, E., R. Lozano-Durán, A. Piedra-Aguilera, L. Cruzado, E.R. Bejarano, and A.G. Castillo. 2013. Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol. 199: 464-475.
- Seo, J.K., M.-K. Kim, H.-R. Kwak, H.-S. Choi, M. Nam, J. Choe, B. Choi, S.-J. Han, J.-H. Kang, and C. Jung. 2018. Molecular dissection of distinct symptoms induced by tomato chlorosis virus and tomato yellow leaf curl virus based on comparative transcriptome analysis. Virology 516: 1-20.
- Settlage, S.B., R.G. See, and L. Hanley-Bowdoin. 2005. Geminivirus C3 protein: replication enhancement and protein interactions. J. Virol. 79: 9885-9895.
- Shivaprasad, P.V., R. Akbergenov, D. Trinks, R. Rajeswaran, K. Veluthambi, T. Hohn, and M.M. Pooggin. 2005. Promoters, transcripts, and regulatory proteins of mungbean yellow mosaic geminivirus. J. Virol. 79: 8149-8163.
- Tsai, W.-A., S.-H. Weng, M.-C. Chen, J.-S. Lin, and W.-S. Tsai. 2019. Priming of plant resistance to heat stress and tomato yellow leaf curl Thailand virus with plant-derived materials. Front. Plant Sci. 10: 906.
- Urbino, C., G. Thébaud, M. Granier, S. Blanc, and M. Peterschmitt. 2008. A novel cloning strategy for isolating, genotyping and phenotyping genetic variants of gemini-viruses. Virol. J. 5: 135.
- Waller, F., B. Achatz, H. Baltruschat, J. Fodor, K. Becker, M. Fischer, T. Heier, R. Hückelhoven, C. Neumann, D. von Wettstein, P. Franken, and K.-H. Kogel. 2005. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc. Natl. Acad. Sci. U.S.A. 102: 13386-13391.
- Xin, M., X. Wang, H. Peng, Y. Yao, C. Xie, Y. Han, Z. Ni, and Q. Sun. 2012. Transcriptome comparison of susceptible and resistant wheat in response to powdery mildew infection. Genomics Proteomics Bioinformatics 10: 94-106.
- Xiong, J., L. Liu, X. Ma, F. Li, C. Tang, Z. Li, B. Lü, T. Zhou, X. Lian, Y. Chang, M. Tang, S. Xie, and X. Lu. 2020. Characterization of PtAOS1 promoter and three novel interacting proteins responding to drought in Poncirus trifoliata. Int. J. Mol. Sci. 21: 4705.
- Xu, P., F. Chen, J.P. Mannas, T. Feldman, L.W. Sumner, and M.J. Roossinck. 2008. Virus infection improves drought tolerance. New Phytol. 180: 911-921.
- Yang, J., J.W. Kloepper, and C.-M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14: 1-4.
- Zegzouti, H., B. Jones, C. Marty, J.-M. Lelièvre, A. Latché, J.-C. Pech, and M. Bouzayen. 1997. ER5, a tomato cDNA encoding an ethylene-responsive LEA-like protein: charac-terrization and expression in response to drought, ABA and wounding. Plant Mol. Biol. 35: 847-854.
- Zeng, W., M. Melotto, and S.Y. He. 2010. Plant stomata: a checkpoint of host immunity and pathogen virulence. Curr. Opin. Biotechnol. 21: 599-603.
- Zhu, J.-K. 2016. Abiotic stress signaling and responses in plants. Cell 167: 313-324.