Abstracts
Abstract
The development of molecular tools for agricultural analysis promoted property crop production improvement to rising food security from stress caused by organic phenomenon factors, as well as the insect pest attack. Crop productivity has inflated quintuple over the past few decades due to high-yielding varieties, irrigation, fertilizers, and pesticides. However, the planet population is anticipated to grow staggeringly over subsequent four decades, from nine to ten billion individuals. It’s so imperative to extend the assembly of food grains to feed the population. As way as ancient agriculture technology is bothered, it still incorporates a good distance to travel. The molecular tools wont to shield crops from organic phenomenon stress during this instance like plant alpha-amylase inhibitors, vacuolar ATPase, hemoprotein P450 monooxygenase, enzyme modulating oostatic issue (TMOF), enzyme inhibitors (PIs), with the exception of sterol enzyme (CHOx), lipoxygenases (enzyme), and technology, etc. despite not being wholesome. Additionally to delivery ecologically property farming practices into our daily lives, bionanotechnology will give opportunities for developing nations and developed nations shortly. It should have an enormous impact on farming systems while not the employment of pesticides. There area unit considerations concerning the food safety risks related to transgenic plants since the unfold of antibiotic resistance, the changes within the nutrient composition of plants, and also the production of noxious proteins and allergens can not be answered currently. Besides victimization high-yielding varieties, irrigation, and fertilizers, it’s a potent role in minimizing the economic losses caused by insects. Within the current context of insect pest management, it’s imperative to develop bionanotechnology-based tools for pest management. However, their economical use necessity takes for reckoning the numerous ecological role useful insect play for the longer-term development of agriculture.
Keywords:
- food security,
- insect pest management,
- molecular tools,
- yield
Résumé
Le développement d’outils moléculaires pour l’analyse agricole a favorisé l’amélioration de la production des cultures afin d’accroître la sécurité alimentaire face aux stress causés par des phénomènes organiques ou par des attaques d’insectes nuisibles. La productivité des cultures a quintuplé au cours des dernières décennies grâce aux variétés à haut rendement, à l’irrigation, aux engrais et aux pesticides. Cependant, la population de la planète devrait connaître une croissance vertigineuse au cours des quatre prochaines décennies, passant de neuf à dix milliards d’individus. Il est donc impératif d’étendre la disponibilité des céréales alimentaires pour nourrir la population. Comme la technologie agricole ancienne est perturbée, il lui reste encore un long chemin à parcourir. Les outils moléculaires ont l’habitude de protéger les cultures de stress liés aux phénomènes organiques, comme les inhibiteurs de l’alpha-amylase, l’ATPase vacuolaire, l’hémoprotéine P450 monooxygénase, l’enzyme modulant le problème oostatique (TMOF), les inhibiteurs d’enzymes (IP), à l’exception de l’enzyme stérol (CHOx), les lipoxygénases (enzymes), et la technologie, etc., bien qu’ils ne soient pas sains. En plus d’apporter des pratiques agricoles écologiques dans notre vie quotidienne, la bionanotechnologie ouvrira sous peu des opportunités aux pays en développement et aux pays développés. Elle devrait avoir un impact énorme sur les systèmes agricoles tout en évitant l’emploi de pesticides. Il existe des considérations à propos des risques de sécurité alimentaire liés aux plantes transgéniques, étant donné que le développement de la résistance aux antibiotiques, les changements dans la composition nutritive des plantes et la production de protéines nocives et d’allergènes n’ont pas encore été évalués. Outre le recours à des variétés à haut rendement, à l’irrigation et aux engrais, cela joue un rôle important dans la réduction des pertes économiques causées par les insectes. Dans le contexte actuel de lutte intégrée contre les ennemis des cultures, il est impératif de développer des outils de lutte basés sur les bionanotechnologies. Cependant, leur utilisation économique nécessite de prendre en compte les nombreux rôles écologiques que jouent les insectes dans le développement à long terme de l’agriculture.
Mots-clés :
- lutte intégrée,
- outils moléculaires,
- rendement,
- sécurité alimentaire
Appendices
REFERENCES
- Almohamad, R., F.J. Verheggen, and É. Haubruge. 2009. Searching and oviposition behavior of aphidophagous hoverflies (Diptera: Syrphidae): a review. Biotechnol. Agron. Soc. Environ. 13: 467-481.
- Barraclough, E.I., E.P.J. Burgess, B.A. Philip, M.W. Wohlers, and L.A. Malone. 2009. Tritrophic impacts of Bt-expressing transgenic pine on the parasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) via its host Pseudocoremia suavis (Lepidoptera: Geometridae). Biol. Control 49: 192-199.
- Baum, J.A., T. Bogaert, W. Clinton, G.R. Heck, P. Feldmann, O. Ilagan, S. Johnson, G. Plaetinck, T. Munyikwa, M. Pleau, T. Vaughn, and J. Roberts. 2007. Control of coleopteran insect pests through RNA interference. Nat. Biotechnol. 25: 1322-1326.
- Baur, M.E., and D.J. Boethel. 2003. Effect of Bt-cotton expressing Cry1A(c) on the survival and fecundity of two hymenopteran parasitoids (Braconidae, Encyrtidae) in the laboratory. Biol. Control 26: 325-332. doi:10.1016/S1049-9644(02)00160-3
- Bell, H.A., E.C. Fitches, G.C. Marris, J. Bell, J.P. Edwards, J.A. Gatehouse, and A.M.R. Gatehouse. 2001. Transgenic GNA expressing potato plants augment the beneficial biocontrol of Lacanobia oleracea (Lepidoptera; Noctuidae) by the parasitoid Eulophus pennicornis (Hymenoptera; Eulophidae). Transgenic Res. 10: 35-42. doi:10.1023/A:1008923103515
- Benelli, G. 2018. Gold nanoparticles – against parasites and insect vectors. Acta Trop. 178: 73-80.
- Bernal, J.S., J.G. Griset, and P.O. Gillogly. 2002. Impacts of developing on Bt maize-intoxicated hosts on fitness parameters of a stem borer parasitoid. J. Entomol. Sci. 37: 27-40.
- Bhan, S., L. Mohan, and C.N. Srivastava. 2018. Nanopesticides: a recent novel ecofriendly approach in insect pest mana-gement. J. Entomol. Res. 42: 263-270.
- Bicheng, H., C. Yuan, Y. Meizhen, M. Klaus, A. Chunjuv, and S. Jie. 2013. Fluorescent nanoparticle delivered dsRNA toward genetic control of insect pests. Adv. Mater. 25: 4580-4584.
- Budenberg, W.J., W. Powell, and S.J. Clark. 1992. The influence of aphids and honeydew on the leaving rate of searching aphid parasitoids from wheat plants. Entomol. Exp. Appl. 63: 259-264.
- Buitenhuis, R., J.N. McNeil, G. Boivin, and J. Brodeur. 2004. The role of honeydew in host searching of aphid hyper-parasitoids. J. Chem. Ecol. 30: 273-285.
- Bunge, M., N. Araghipour, T. Mikoviny, J. Dunkl, R. Schnitzhofer, A. Hansel, F. Schinner, A. Wisthaler, R. Margesin, and T.D. Märk. 2008. Online monitoring of microbial volatile metabolites by proton transfer reactionmass spectrometry. Appl. Environ. Microbiol. 74: 2179-2186.
- Burand, J.P., and W.B. Hunter. 2013. RNAi: future in insect management. J. Invertebr. Pathol. 112: S68-S74.
- Chakravarthy, A.K., A. Bhattacharyya, P.R. Shashank, T.T. Epidi, B. Doddabasappa, and S.K. Mandal. 2012. DNA-tagged nano gold: a new tool for the control of the armyworm, Spodoptera litura Fab. (Lepidoptera: Noctuidae). Afr. J. Biotechnol. 11: 9295-9301.
- Chakroun, M., N. Banyuls, Y. Bel, B. Escriche, and J. Ferre. 2016. Bacterial Vegetative insecticidal protein (Vip) from entomopathogenic bacteria. Microbiol. Mol. Biol. Rev. 80: 329-350.
- Chandra, J.H., L.F.A.A. Raj, S.K.R. Namasivayam, and R.S.A. Bharani. 2013. Improved pesticidal activity of fungal metabolite from nomureae rileyi with chitosan nano-particles. Pages 387-390 in T. Sasipraba (ed.), International conference on advanced nanomaterials and emerging engineering technologies. Institute of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, USA. doi:10.1109/ICANMEET.2013.6609326
- Chandrashekharaiah, M., S.B. Kandakoor, G.B. Gowda, V. Kamar, and A.K. Chakravarthy. 2015. Nanomaterials: a review of their action and application in pest management and evaluation of DNA-tagged particles. Pages 113-126 in A.K. Chakravarthy (ed.), New horizons in insect science: towards sustainable pest management. Springer, New Delhi, India.
- Chèvre, A.M., F. Eber, A. Baranger, M.C. Kerlan, P. Barret, G. Festoc, P. Vallée, and M. Renard. 1996. Interspecific gene flow as a component of risk assessment for transgenic Brassicas. Acta Hortic. 407: 69-179.
- Choi, M.-Y., B.D. Roitberg, A. Shani, D.A. Raworth, and G.-H. Lee. 2004. Olfactory response by the aphidophagous gall midge, Aphidoletes aphidimyza to honeydew from green peach aphid, Myzus persicae. Entomol. Exp. Appl. 111: 37-45.
- Christeller, J.T., E.P.J. Burgess, V. Mett, H.S. Gatehouse, N.P. Markwick, C. Murray, L.A. Malone, M.A. Wright, B.A. Philip, D. Watt, L.N. Gatehouse, G.L. Lövei, A.L. Shannon, M.M. Phung, L.M. Watson, and W.A. Laing. 2002. The expression of a mammalian proteinase inhibitor, bovine spleen trypsin inhibitor in tobacco and its effects on Helicoverpa armigera larvae. Transgenic Res. 11: 161-173.
- Corbin, D.R., R.J. Grebenok, T.E. Ohnmeiss, J.T. Greenplate, and J.P. Purcell. 2001. Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants. Plant Physiol. 126: 1116-1128.
- Darmency, H. 1994. The impact of hybrids between genetically modified crop plants and their related species: introgression and weediness. Mol. Ecol. 3: 37-40.
- Deshpande, M.V. 2019. Nanobiopesticide perspectives for protection and nutrition of plants. Pages 47-68 in O. Koul (ed.), Nano-biopesticides today and future perspectives. Academic Press, London, United Kingdom.
- Devi, S., and S.S. Kanwar. 2017. Cholesterol oxidase: source, properties and applications. Insights Enzyme Res. 1: 1-12. doi:10.21767/2573-4466.100005
- Du, Y., G.M. Poppy, W. Powell, and L.J. Wadhams. 1997. Chemically mediated associative learning in the host foraging behavior of the aphid parasitoid Aphidius ervi (Hymenoptera: Braconidae). J. Insect Behav. 10: 509-522. doi.org/10.1007/BF02765374
- Duan, X., X. Li, Q. Xue, M. Abo-EI-Saad, D. Xu, and R. Wu. 1996. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat. Biotechnol. 14: 494-498.
- El-Abbassi, A., N. Saadaoui, H. Kiai, J. Raiti, and A. Hafidi. 2017. Potential applications of olive mill wastewater as biopesticide for crops protection. Sci. Total Environ. 576: 10-21.
- Eleftherianos, I., J. Marokhazi, P.J. Millichap, A.J. Hodgkinson, A. Sriboonlert, R.H. ffrench-Constant, and S.E. Reynolds. 2006. Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference. Insect Biochem. Mol. Biol. 36: 517-525.
- Elek, N., R. Hoffman, U. Raviv, R. Resh, I. Ishaaya, and S. Magdassi. 2010. Novaluron nanoparticles: formation and potential use in controlling agricultural insect pests. Colloids Surf. A-Physicochem. Eng. Asp. 372: 66-72.
- English, C., and K. Schreiber. 2020. Where are GMO crops grown? GLP infographics document the global growth of agricultural biotechnology innovation. Available online [https://www.printfriendly.com/p/g/rG2CcH].
- Epsky, N.D., R.R. Heath, B.D. Dueben, C.R. Lauzon, A.T. Proveaux, and G.B. MacCollom. 1998. Attraction of 3methyl1butanol and ammonia identified from Enterobacter agglomerans to Anastrepha suspensa. J. Chem. Ecol. 24: 1867-1880.
- Eski, A., İ. Demir, K. Sezen, and Z. Demirbağ. 2017. New bio-pesticide from a local Bacillus thuringiensis var. tenebrionis (Xd3) against alder leaf beetle (Coleoptera: Chrysomelidae). World J. Microbiol. Biotechnol. 33: 95.
- Felton, G.W., J.L. Bi, C.B. Summers, A.J. Mueller, and S.S. Duffey. 1994. Potential role of lipoxygenases in defense against insect herbivory. J. Chem. Ecol. 20: 651-666.
- Feng, B.-H., and L.-F. Peng. 2012. Synthesis and characterization of carboxymethyl chitosan carrying ricinoleic functions as an emulsifier for azadirachtin. Carbohydr. Polym. 88: 576-582.
- Flores-Céspedes, F., C.I. Figueredo-Flores, I. Daza-Fernández, F. Vidal-Peña, M. Villafranca-Sánchez, and M. Fernández-Pérez, M. 2012. Preparation and characterization of imidacloprid lignin-polyethylene glycol matrices coated with ethylcellulose. J. Agric. Food Chem. 60: 1042-1051.
- Franco, O.L., D.J. Rigden, F.R. Melo, and M.F. Grossi-de-Sá. 2002. Plant α-amylase inhibitors and their interaction with insect α-amylases: structure, function and potential for crop protection. Eur. J. Biochem. 269: 397-412.
- Frandsen, M.V., M.S. Pedersen, M. Zellweger, S. Gouin, S.D. Roorda, and T.Q.C. Phan. 2010. Insecticidal polymer matrix comprising HDPE and LDPE. Publication no WO2010015256A2. Available online [https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2010015256].
- Gaines, J.C. 1957. Cotton insects and their control in the United Sates. Annu. Rev. Entomol. 2: 319-338.
- Gatehouse, A.M.R., G.M. Davison, C.A. Newell, A. Merryweather, W.D.O. Hamilton, E.P.J. Burgess, R.J.C. Gilbert, and J.A. Gatehouse. 1997. Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: growth room trials. Mol. Breed. 3: 49-63.
- Geng, J.H., Z.R. Shen, K. Song, and L. Zheng. 2006. Effect of pollen of regular cotton and transgenic Bt + CpTi cotton on the survival and reproduction of the parasitoid wasp Trichogramma chilonis (Hymenoptera: Trichogrammatidae) in the laboratory. Environ. Entomol. 35: 1661-1668.
- Goldshtein, R., I. Jaffe, and B. Tulbovitz. 2005. Hydrophilic dispersions of nanoparticles of inclusion complexes of amorphous compounds. Publication no WO2006106519. Available online [https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2006106519].
- Gopal, M., R. Kumar, and A. Goswami. 2012. Nano-pesticides - a recent approach for pest control. J. Plant Prot. Sci. 4: 1-7.
- Government of India. 2020. Cultivation of genetically modified crops. Press Information Bureau. Available online [https://pib.gov.in/PressReleasePage.aspx?PRID=1605056].
- Harada, H., H. Oyaizu, and H. Ishikawa. 1996. A consideration about the origin of aphid intracellular symbiont in connection with gut bacterial flora. J. Gen. Appl. Microbiol. 42: 17-26.
- Hayles, J., L. Johnson, C. Worthley, and D. Losic. 2017. Nano-pesticides: a review of current research and perspectives. Pages 193-225 in A.M. Grumezescu (ed.), New pesticides and soil sensors. Academic Press, London, United Kingdom.
- Haynes, S., A.C. Darby, T.J. Daniell, G. Webster, F.J.F. Van Veen, H.C.J. Godfray, J.I. Prosser, and A.E. Douglas. 2003. Diversity of bacteria associated with natural aphid populations. Appl. Environ. Microbiol. 69: 7216-7223.
- Hellmann, C., A. Greiner, and J.H. Wendorff. 2011. Design of pheromone releasing nanofibers for plant protection. Polym. Adv. Technol. 22: 407-413.
- Hogervorst, P.A.M., F.L. Wäckers, and J. Romeis. 2007. Effects of honeydew sugar composition on the longevity of Aphidius ervi. Entomol. Exp. Appl. 122: 223-232.
- Hussain, A., J.M.S. Forrest, and A.F.G. Dixon. 1974. Sugar, organic acid, phenolic acid and plant growth regulator content of extracts of honeydew of the aphid Myzus persicae and of its host plant, Raphanus sativus. Ann. Appl. Biol. 78: 65-73.
- ISAAA. 2018. Brief 54: Global status of commercialized biotech/GM crops in 2018: Biotech crops continue to help meet the challenges of increased population and climate change. Ithaca, NY, USA, 100 pp. Available online [https://www.isaaa.org/resources/publications/briefs/54/download/isaaa-brief-54-2018.pdf]
- Johnson, M.T., and F. Gould. 1992. Interaction of genetically engineered host plant resistance and natural enemies of Heliothis virescens (Lepidoptera: Noctuidae) in tobacco. Environ. Entomol. 21: 586-597.
- Joshi, H., Somdutt, P. Choudhary, and S.L. Mundra. 2019. Future prospects of nanotechnology in agriculture. Int. J. Chem. Stud. 7: 957-963.
- Kai, M., M. Haustein, F. Molina, A. Petri, B. Scholz, and B. Piechulla. 2009. Bacterial volatiles and their action potential. Appl. Microbiol. Biotechnol. 81: 1001-1012.
- Kamaraj, C., G. Rajakumar, A.A. Rahuman, K. Velayutham, A. Bagavan, A.A. Zahir, and G. Elango. 2012. Feeding deterrent activity of synthesized silver nanoparticles using Manilkara zapota leaf extract against the house fly, Musca domestica (Diptera: Muscidae). Parasitol. Res. 111: 2439-2448.
- Katoch, R., A. Sethi, N. Thakur, and L.L. Murdock. 2013. RNAi for insect control: current perspective and future challenges. Appl. Biochem. Biotechnol. 171: 847-873.
- Kulkarni, A.R., K.S. Soppimath, T.M. Aminabhavi, A.M. Dave, and M.H. Mehta. 1999. Application of sodium alginate beads crosslinked with glutaraldehyde for controlled release of pesticide. Carbohydr. Polym. 24: 285-286.
- Lade, B.D., D.P. Gogle, D.B. Lade, G.M. Moon, S.B. Nandeshwar, and S.D. Kumbhare. 2019. Nanobiopesticide formulations: application strategies today and future perspectives. Pages 179-206 in O. Koul (ed.), Nano-biopesticides today and future perspectives. Academic Press, London, United Kingdom.
- Lao, S.-B., Z.-X. Zhang, H.-H. Xu, and G.-B. Jiang. 2010. Novel amphiphilic chitosan derivatives: synthesis, characterization and micellar solubilization of rotenone. Carbohydr. Polym. 82: 1136-1142.
- Lau, Y.S., S. Sulaiman, and H. Othman. 2011. The effectiveness of trypsin modulating oostatic factor (TMOF) and combination of TMOF with Bacillus thuringiensis against Aedes aegypti larvae in the laboratory. Iran. J. Arthropod Borne Dis. 5: 13-19.
- Lee, J.C., G.E. Heimpel, and G.L. Leibee. 2004. Comparing floral nectar and aphid honeydew diets on the longevity and nutrient levels of a parasitoid wasp. Entomol. Exp. Appl. 111: 189-199.
- Leroy, P.D., A. Sabri, S. Heuskin, P. Thonart, G. Lognay, F.J. Verheggen, F. Francis, Y. Brostaux, G.W. Felton, and E. Haubruge. 2011. Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat. Commun. 2: 348.
- Leroy, P.D., B. Wathelet, A. Sabri, F. Francis, F.J. Verheggen, Q. Capella, P. Thonart, and E. Haubruge. 2011. Aphid-host plant interactions: does aphid honeydew exactly reflect the host plant amino acid composition? Arthropod Plant Interact. 5: 193-199.
- Li, M., Q. Huang, and Y. Wu. 2011. A novel chitosan-poly(lactide) copolymer and its submicron particles as imidacloprid carriers. Pest Manag. Sci. 67: 831-836.
- Liu, X., Q. Zhang, J.-Z. Zhao, Q. Cai, H. Xu, and J. Li. 2005. Effects of the Cry1Ac toxin of Bacillus thuringiensis on Microplitis mediator, a parasitoid of the cotton bollworm, Helicoverpa armigera. Entomol. Exp. Appl. 114: 205-213.
- Macrae, T.C., M.E. Baur, D.J. Boethel, B.J. Fitzpatrick, A.-G. Gao, J.C. Gamundi, L.A. Harrison, V.T. Kabuye, R.M. Mcpherson, J.A. Miklos, M.S. Paradise, A.S. Toedebusch, and A. Viegas. 2005. Laboratory and field evaluations of transgenic soybean exhibiting high-dose expression of a synthetic Bacillus thuringiensiscry1A gene for control of Lepidoptera. J. Econ. Entomol. 98: 577-587.
- Malone, L.A., and M.-H. Pham-Delègue. 2001. Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.). Apidologie 32: 287-304.
- Mao, Y.-B., W.-J. Cai, J.-W. Wang, G.-J. Hong, X.-Y. Tao, L.-J. Wang, Y.-P. Huang, and X.-Y. Chen. 2007. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat. Biotechnol. 25: 1307-1313.
- Medina-Pérez, G., F. Fernández-Luqueño, R.G. Campos-Montiel, K.B. Sánchez-López, L.N. Afanador-Barajas, and L. Prince. 2019. Nanotechnology in crop protection: status and future trends. Pages 17-45 in O. Koul (ed.), Nano-biopesticides today and future perspectives. Academic Press, London, United Kingdom.
- Mensah, R., C. Moore, N. Watts, M.A. Deseo, P.G. Glennie, and A. Pitt. 2014. Discovery and development of a new semiochemical biopesticide for cotton pest management: assessment of extract effects on the cotton pest Helicoverpa spp. Entomol. Exp. Appl. 152: 1-15.
- Mittler, T.E. 1958. Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae): II. The nitrogen and sugar composition of ingested phloem sap and excreted honeydew. J. Exp. Biol. 35: 74-84.
- Naranjo, S.E. 2005. Long-term assessment of the effects of transgenic Bt cotton on the abundance of nontarget arthropod natural enemies. Environ. Entomol. 34: 1193-1210. doi:10.1093/ee/34.5.1193
- Oerke, E.-C. 2006. Crop losses to pests. J. Agric. Sci. 144: 31-43.
- Panáček, A., M. Kolář, R. Večeřová, R. Prucek, J. Soukupová, V. Kryštof, P. Hamal, R. Zbořil, L and L. Kvítek. 2009. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30: 6333-6340.
- Pavela, R., P. Waffo-Teguo, B. Biais, T. Richard, and J.-M. Mérillon. 2017. Vitis vinifera canes, a source of stilbenoids against Spodoptera littoralis larvae. J. Pest Sci. 90: 961-970.
- Pavoni, L., G. Benelli, F. Maggi, and G. Bonacucina. 2019. Green nanoemulsion interventions for biopesticide formulations. Pages 133-160 in O. Koul (ed.), Nano-biopesticides today and future perspectives. Academic Press, London, United Kingdom.
- Pilcher, C.D., M.E. Rice, and J.J. Obrycki. 2005. Impact of transgenic Bacillus thuringiensis corn and crop phenology on five nontarget arthropods. Environ. Entomol. 34: 1302-1316.
- Prütz, G., and K. Dettner. 2004. Effect of Bt corn leaf suspension on food consumption by Chilo partellus and life history parameters of its parasitoid Cotesia flavipes under laboratory conditions. Entomol. Exp. Appl. 111: 179-187.
- Rao, P.V.M., and A. Kumari. 2016. Effect of oxymatrine 0.5% EC on predators and parasites of important pests on certain vegetable crops cultivated in Ranga Reddy District (Telangana). Pestology 40: 15-18.
- Robacker, D.C., and C.R. Lauzon. 2002. Purine metabolizing capability of Enterobacter agglomerans affects volatiles production and attractiveness to Mexican fruit fly. J. Chem. Ecol. 28: 1549-1563. doi:10.1023/A:1019920328062
- Robacker, D.C., A.J. Martinez, J.A. Garcia, and R.J. Bartelt. 1998. Volatiles attractive to the Mexican fruit fly (Diptera: Tephritidae) from eleven bacteria taxa. Fla. Entomol. 81: 497-508.
- Sanders, C.J., J.K. Pell, G.M. Poppy, A. Raybould, M. Garcia-Alonso, and T.H. Schuler. 2007. Host-plant mediated effects of transgenic maize on the insect parasitoid Campoletis sonorensis (Hymenoptera: Ichneumonidae). Biol. Control 40: 362-369.
- Santhoshkumar, T., A.A. Rahuman, G. Rajakumar, S.Marimuthu, A. Bagavan, C. Jayaseelan, A.A. Zahir, G.Elango, and C. Kamaraj. 2011. Synthesis of silver nano-particles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol. Res. 108: 693-702.
- Sanyal, I., A.K. Singh, M. Kaushik, and D.V. Amla. 2005. Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cry1Ac gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci. 168: 1135-1146.
- Savary, S., P.S. Teng, L. Willocquet, and F.W. Nutter, Jr. 2006. Quantification and modeling of crop losses: a review of purposes. Annu. Rev. Phytopathol. 44: 89-112.
- Schellenberger, U., J. Oral, B.A. Rosen, J.-Z. Wei, G. Zhu, W. Xie, M.J. McDonald, D.C. Cerf, S.H. Diehn, V.C. Crane, G.A. Sandahl, J.-Z. Zhao, T.M. Nowatzki, A. Sethi, L. Liu, Z. Pan, Y. Wang, A.L. Lu, G. Wu, and L. Liu.2016. A selective insecticidal protein from Pseudomonas for controlling corn rootworms. Science 354: 634-637.
- Scholz, D., and H.-M. Poehling. 2000. Oviposition site selection of Episyrphus balteatus. Entomol. Exp. Appl. 94: 149-158.
- Schuler, T.H., I. Denholm, S.J. Clark, C.N. Stewart, and G.M. Poppy. 2004. Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). J. Insect Physiol. 50: 435-443.
- Schulz, S., and J.S. Dickschat. 2007. Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 24: 814-842.
- Sellami, S., K. Jamoussi, E. Dabbeche, and S. Jaoua. 2011. Increase of the Bacillus thuringiensis secreted toxicity against Lepidopteron larvae by homologous expression of the vip3LB gene during sporulation stage. Curr. Microbiol. 63: 289.
- Shang, Y., K. Hasan, G.J. Ahammed, M. Li, H. Yin, and J. Zhou. 2019. Applications of nanotechnology in plant growth and crop protection: a review. Molecules 24: 2558.
- Shankar, S.S., A. Rai, A. Ahmad, and M. Sastry. 2004. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275: 496-502.
- Sharma, A., K. Sood, J. Kaur, and M. Khatri. 2019. Agro-chemical loaded biocompatible chitosan nanoparticles for insect pest management. Biocatal. Agric. Biotechnol. 18: 101079.
- Sharma, H.C., and M.V. Rao. (eds.). 1995. Pests and pest management in India: the changing scenario. Plant Protection Association of India, Rajendranagar, Andhra Pradesh, India. 312 pp.
- Sharma, K. 2015. Protease inhibitors in crop protection from insects. Int. J. Curr. Res. Acad. Rev. 3: 55-70.
- Shojaei, T.R., M.A.M. Salleh, M. Tabatabaei, H. Mobli, M. Aghbashlo, S.A. Rashid, and T. Tan. 2019. Applications of nanotechnology and carbon nanoparticles in agriculture. Pages 247-277 in S.A. Rashid, R.N.I. Raja Othman, and M.Z. Hussein (eds.), Synthesis, technology and applications of carbon nanomaterials. Elsevier, Amsterdam, Netherlands.
- Shukle, R.H., and L.L. Murdock. 1983. Lipoxygenase trypsin inhibitor, and lectin from soybeans: effects on larval growth of Manduca sexta (Lepidoptera: Sphingidae). Environ. Entomol. 12: 787-791.
- Sparks, T.C., J.E. Dripps, G.B. Watson, and D. Paroonagian. 2012. Resistance and cross-resistance to the spinosyns - a review and analysis. Pestic. Biochem. Physiol. 102: 1-10.
- Stewart, C.N., J.N. All, P.L. Raymer, and S. Ramachandran. 1997. Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Mol. Ecol. 6: 773-779.
- Swaminathan, M.S. 2000. Genetic engineering and food security: ecological and livelihood issues. Pages 37-44 in G.J. Persley, and M.M. Lantin (eds.), Agricultural bio-technology and the rural poor. Consultative Group on International Agricultural Research, Washington, DC, USA.
- Tamhane, V.A., A.P. Giri, M.N. Sainani, and V.S. Gupta. 2007. Diverse forms of Pin-II family proteinase inhibitors from Capsicum annuum adversely affect the growth and development of Helicoverpa armigera. Gene 403: 29-38.
- Tohidfar, M., B. Ghareyazie, M. Mosavi, S. Yazdani, and R. Golabchian. 2008. Agrobacterium-mediated transformation of cotton (Gossypium hirsutum) using a synthetic cry1Ab gene for enhanced resistance against Heliothis armigera. Iran. J. Biotechnol. 6: 164-173.
- Tortiglione, C., P. Fanti, F. Pennacchio, C. Malva, M. Breuer, A. De Loof, L.M. Monti, E. Tremblay, and R. Rao. 2002. The expression in tobacco plants of Aedes aegypti Trypsin Modulating Oostatic Factor (Aea-TMOF) alters growth and development of the tobacco budworm, Heliothis virescens. Mol. Breed. 9: 159-169.
- Valencia-Jiménez, A., J.W. Arboleda, A. López Ávila, and M.F. Grossi-de-Sá. 2008. Digestive α-amylases from Tecia solanivora larvae (Lepidoptera: Gelechiidae): response to pH, temperature and plant amylase inhibitors. Bull. Entomol. Res. 98: 575-579.
- Vatanparast, M., and Y. Kim. 2017. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua. PLoS One 12: e0183054.
- Vendan, S.E., K. Baskar, M.G. Paulraj, and S. Ignacimuthu. 2009. Antifeedant and larvicidal effects of Hydnocarpus alpine Wt. (Flacourtiaceae) extracts against the larvae of Helicoverpa armigera Hub. (Lepidoptera: Noctuidae). Pages 210-216 in S. Ignacimuthu, and B.V. David (eds.), Ecofriendly insect pest management. Elite Publishing House, New Delhi, India.
- Verheggen, F.J., L. Arnaud, S. Bartram, M. Gohy, and E. Haubruge. 2008. Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly. J. Chem. Ecol. 34: 301-307.
- Wäckers, F.L. 2000. Do oligosaccharides reduce the suitability of honeydew for predators and parasitoids? A further facet to the function of insectsynthesized honeydew sugars. Oikos 90: 197-201.
- Wright, J.E. 1997. Formulation for insect sex pheromone dispersion. Patent number US 5670145 A 19970923.
- Yu, M., J. Yao, J. Liang, Z. Zeng, B. Cui, X. Zhao, C. Sun, Y. Wang, G. Liu, and H. Cui. 2017. Development of functionalized abamectin poly(lactic acid) nanoparticles with regulatable adhesion to enhance foliar retention. RSC Adv. 7: 11271-11280.
- Zahir, A.A., A. Bagavan, C. Kamaraj, G. Elango, and A.A. Rahuman. 2012. Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J. Biopestic. 5: 95-102.
- Zahir, A.A., A.A. Rahuman. 2012. Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Vet. Parasitol. 187: 511-520.
- Zielińska, A., B. Costa, M.V. Ferreira, D. Miguéis, J.M.S. Louros, A. Durazzo, M. Lucarini, P. Eder, M.V. Chaud, M. Morsink, N. Willemen, P. Severino, A. Santini, and E.B. Souto. 2020. Nanotoxicology and nanosafety: safety-by-design and testing at a glance. Int. J. Environ. Res. Public Health 17: 4657.