Abstracts
Abstract
Cannabis (Cannabis sativa L.; Rosales: Cannabaceae) is a newly legalized crop and requires deeper insights on its pest communities. In this preliminary study, we identified a thrips species affecting indoor-grown cannabis in Canada and tested its impact on plant yield. We used three levels of initial infestation (zero, one, and five thrips) on individual plants grown in two growing mediums: conventional substrate or substrate containing the biostimulant Bacillus pumilus Meyer and Gottheil (Bacillales: Bacillaceae). We found that the onion thrips, Thrips tabaci (Lindeman) (Thysanoptera: Thripidae), is proliferating in indoor-grown cannabis. Furthermore, our results showed that fresh yields were higher for the plants that initially received zero thrips compared to those that initially received five thrips. Moreover, the biostimulant only marginally helped reduce the impact of thrips. We highlight the importance for growers to carefully monitor thrips infestations in indoor-grown cannabis. Finally, we emphasize the need for more research related to the impact of pests on cannabis yields and safe means of pest control for this strictly regulated crop.
Keywords:
- integrated pest management,
- biopesticides,
- marijuana,
- hemp,
- THC,
- cannabinoids
Résumé
Le cannabis (Cannabis sativa L.; Rosales : Cannabaceae) est une culture nouvellement légalisée et qui requiert des connaissances approfondies sur ses ravageurs. Dans cette étude préliminaire, nous avons identifié une espèce de thrips affectant le cannabis cultivé à l’intérieur au Canada et testé son impact sur le rendement des plants. Nous avons testé trois niveaux initiaux d’infestation (zéro, un et cinq thrips) sur des plants individuels cultivés dans deux terreaux : un substrat conventionnel ou un substrat contenant le biostimulant Bacillus pumilus Meyer and Gottheil (Bacillales : Bacillaceae). Nous avons observé que le thrips de l’oignon, Thrips tabaci (Lindeman) (Thysanoptera : Thripidae) prolifère dans le cannabis cultivé à l’intérieur. Nos résultats montrent que le rendement des plants de cannabis est plus élevé pour les plants n’ayant pas reçu de thrips comparativement aux plants sur lesquels cinq thrips ont initialement été inoculés. De plus, le biostimulant n’a pas permis de réduire l’impact des thrips. Nous mettons en lumière l’importance pour les producteurs de cannabis cultivé à l’intérieur de faire un suivi rigoureux de leurs populations de thrips. Finalement, nous soulignons les besoins importants en recherche concernant les ravageurs du cannabis, leurs impacts et le développement de méthodes de lutte dans cette culture hautement réglementée.
Mots-clés :
- lutte intégrée,
- biopesticides,
- marijuana,
- chanvre,
- THC,
- cannabinoïdes
Appendices
REFERENCES
- Britt, K.E., M.K. Pagani, and T.P. Kuhar. 2019. First report of brown marmorated stink bug (Hemiptera: Pentatomidae) associated with Cannabis sativa (Rosales: Cannabaceae) in the United States. J. Integr. Pest Manag. 10: 17. doi:10. 1093/jipm/pmz014
- Calvo, P., L. Nelson, and J.W. Kloepper. 2014. Agricultural uses of plant biostimulants. Plant Soil 383: 3-41. doi:10. 1007/s11104-014-2131-8
- Conant, R.T., R.P. Walsh, M. Walsh, C.W. Bell, and M.D. Wallenstein. 2017. Effects of a microbial biostimulant, Mammoth PTM, on Cannabis sativa bud yield. J. Hortic. 4: 191.
- Cranshaw, W., M. Schreiner, K. Britt, T.P. Kuhar, J. McPartland, and J. Grant. 2019. Developing insect pest management systems for hemp in the United States: a work in progress. J. Integr. Pest Manag. 10: 26. doi:10. 1093/jipm/pmz014
- de-Bashan, L.E., J.-P. Hernandez, Y. Bashan, and R.M. Maier. 2010. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings. Environ. Exp. Bot. 69: 343-352. doi:10. 1016/j.envexpbot.2010.04.014
- Dewey, L.H. 1913. Hemp. Pages 283-346 in Yearbook of the United States Department of Agriculture. Government Printing Office, Washington, DC, USA.
- Diaz-Montano, J., M. Fuchs, B.A. Nault, J. Fail, and A.M. Shelton. 2011. Onion thrips (Thysanoptera: Thripidae): a global pest of increasing concern in onion. J. Econ. Entomol. 104: 1-13.
- Eaves, J., S. Eaves, C. Morphy, and C. Murray. 2020. The relationship between light intensity, cannabis yields, and profitability. Agron. J. 112: 1466-1470. doi:10.1002/agj2. 20008
- Fournier, F., G. Boivin, and R.K. Stewart. 1995. Effect of Thrips tabaci (Thysanoptera: Thripidae) on yellow onion yields and economic thresholds for its management. J. Econ. Entomol. 88: 1401-1407.
- Gent, D.H., L.J. du Toit, S.F. Fichtner, S.K. Mohan, H.R. Pappu, and H.F. Schwartz. 2006. Iris yellow spot virus: an emerging threat to onion bulb and seed production. Plant Dis. 90: 1468-1480.
- German, T.L., D.E. Ullman, and J.W. Moyer. 1992. Tospoviruses: diagnosis, molecular biology, phylogeny, and vector relationships. Annu. Rev. Phytopathol. 30: 315-348. doi:10. 1146/annurev.py.30.090192.001531
- Ghosheh, H.Z., and H.K. Al-Shannag. 2000. Influence of weeds and onion thrips, Thrips tabaci (Thysanoptera: Thripidae), on onion bulb yield in Jordan. Crop Prot. 19: 175-179. doi:10.1016/S0261-2194(99)00084-8
- Gonzalez, F., C. Tkaczuk, M.M. Dinu, Ż. Fiedler, S. Vidal, E. Zchori-Fein, and G.J. Messelink. 2016. New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. J. Pest Sci. 89: 295-311.
- Government of Canada. 2020. Cannabis licensed area market data. Available online [https://www.canada.ca/en/health-canada/services/drugs-medication/cannabis/research-data/market/licensed-area.html#tbl-1] (Accessed in July 2020).
- Gravel, A., and R. Naasz. 2019. Development of new insect suppression solutions for greenhouse production. Acta Hortic. 1266: 121-128. doi:10.17660/ActaHortic.2019.1266. 17
- Gullino, M.L., R. Albajes, and P.C. Nicot. 2020. Integrated pest and disease management in greenhouse crops. Springer, Cham, Switzerland. 691 pp.
- Gutiérrez‐Mañero, F.J., B. Ramos‐Solano, A. Probanza, J. Mehouachi, F.R. Tadeo, and M. Talon. 2001. The plant‐growth‐promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol. Plant. 111: 206-211.
- Hao, X., J.L. Shipp, K. Wang, A.P. Papadopoulos, and M.R. Binns. 2002. Impact of western flower thrips on growth, photosynthesis and productivity of greenhouse cucumber. Sci. Hortic. 92: 187-203. doi:10.1016/S0304-4238(01)00301-6
- Kendall, D.M., and J.L. Capinera. 1987. Susceptibility of onion growth stages to onion thrips (Thysanoptera: Thripidae) damage and mechanical defoliation. Environ. Entomol. 16: 859-863.
- Kim, J.S., and Y.H. Je. 2010. A novel biopesticide production: attagel-mediated precipitation of chitinase from Beauveria bassiana SFB-205 supernatant for thermotolerance. Appl. Microbiol. Biotechnol. 87: 1639-1648. doi:10.1007/ s00253-010-2543-1
- Lago, P.K., and D.F. Stanford. 1989. Phytophagous insects associated with cultivated marijuana, Cannabis sativa, in Northern Mississippi. J. Entomol. Sci. 24: 437-445. doi:10. 18474/0749-8004-24.4.437
- Lagos-Kutz, D., B. Potter, C. DiFonzo, H. Russell, and G.L. Hartman. 2018. Two aphid species, Phorodon cannabis and Rhopalosiphum rufiabdominale, identified as potential pests on industrial hemp, Cannabis sativa L., in the US Midwest. Crop Forage Turfgrass Manag. 4: 1-3. doi:10. 2134/cftm2018.04.0032
- Laribi-Habchi, H., M. Biche, N. Drouiche, W. Khalfi, N. Abdi, and N. Mameri. 2014. Effectiveness of a biological insecticide derived from scorpion fish offal against the chickpea weevil. J. Bioprocess. Biotech. 4: 148. doi:10. 4172/2155-9821.1000148
- Mahamad, S., E. Wadsworth, V. Rynard, S. Goodman, and D. Hammond. 2020. Availability, retail price and potency of legal and illegal cannabis in Canada after recreational cannabis legalisation. Drug Alcohol Rev. 39: 337-346.
- McPartland, J.M. 1996a. Cannabis pests. J. Int. Hemp Assoc. 3: 49, 52-55.
- McPartland, J.M. 1996b. A review of cannabis diseases. J. Int. Hemp Assoc. 3: 19-23.
- Morison, G.D. 1957. A review of British glasshouse Thysanoptera. Trans. R. Ent. Soc. Lond. 109: 467-520.
- Nault, B.A., W.C. Kain, and P. Wang. 2014. Seasonal changes in Thrips tabaci population structure in two cultivated hosts. PLOS One 9: e101791. doi:10.1371/journal.pone. 0101791
- Palmer, J.M., L.A. Mound, G.J. Du Heaume, and C. Betts. 1989. CIE guides to insects of importance to man. 2, Thysanoptera. CAB International Institute of Entomology, Wallingford, Oxon, United Kingdom. 73 pp.
- Pereira, P.S., R.A. Sarmento, T.V.S. Galdino, C.H.O. Lima, F.A. dos Santos, J. Silva, G.R. dos Santos, and M.C. Picanço. 2017. Economic injury levels and sequential sampling plans for Frankliniella schultzei in watermelon crops. Pest Manag. Sci. 73: 1438-1445.
- Pérez-García, A., D. Romero, and A. de Vicente. 2011. Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Curr. Opin. Biotechnol. 22: 187-193. doi:10.1016/j.copbio. 2010.12.003
- Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, EISPACK, S. Heisterkamp, B. Van Willigen, J. Ranke, and R Core Team. 2019. nlme: linear and nonlinear mixed effects models. R package version 3.1-140. Available online [https://CRAN. R-project.org/package=nlme].
- Probanza, A., J.A. Lucas, N. Acero, and F.J. Gutierrez Mañero. 1996. The influence of native rhizobacteria on european alder (Alnus glutinosa (L.) Gaertn.) growth. Plant Soil 182: 59-66.
- Punja, Z.K. 2020. Epidemiology of Fusarium oxysporum causing root and crown rot of cannabis (Cannabis sativa L., marijuana) plants in commercial greenhouse production. Can. J. Plant Pathol.
- R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online [https://www.R-project.org/].
- Riley, D.G., S.V. Joseph, R. Srinivasan, and S. Diffie. 2011. Thrips vectors of tospoviruses. J. Integr. Pest Manag. 2: I1- I10.
- Rishad, K.S., S. Rebello, P.S. Shabanamol, and M.S. Jisha. 2016. Biocontrol potential of halotolerant bacterial chitinase from high yielding novel Bacillus Pumilus MCB-7 autochthonous to mangrove ecosystem. Pestic. Biochem. Physiol. 137: 36-41.
- Shipp, J.L., X. Hao, A.P. Papadopoulos, and M.R. Binns. 1998. Impact of western flower thrips (Thysanoptera: Thripidae) on growth, photosynthesis and productivity of greenhouse sweet pepper. Sci. Hortic. 72: 87-102. doi:10.1016/S0304-4238(97)00130-1
- Stuart, R.R., Y.-l. Gao, and Z.-r. Lei. 2011. Thrips: pests of concern to China and the United States. Agric. Sci. China 10: 867-892. doi:10.1016/S1671-2927(11)60073-4
- Torres-Vila, L.M., M.C. Rodrı́guez-Molina, and A. Lacasa-Plasencia. 2003. Impact of Helicoverpa armigera larval density and crop phenology on yield and quality losses in processing tomato: developing fruit count-based damage thresholds for IPM decision-making. Crop Prot. 22: 521-532. doi:10.1016/S0261-2194(02)00205-3
- Tozlu, E., F. Dadaşoğlu, R. Kotan, and G. Tozlu. 2011. Insecticidal effect of some bacteria on Bruchus dentipes Baudi (Coleoptera: Bruchidae). Fresenius Environ. Bull. 20: 918-923.
- Wilson, H., H. Bodwitch, J. Carah, K.M. Daane, C.M. Getz, T.E. Grantham, and V. Butsic. 2019. First known survey of cannabis production practices in California. Calif. Agric. 73: 119-127.
- Wu, S., Y. Gao, X. Xu, Y. Zhang, J. Wang, Z. Lei, and G. Smagghe. 2013. Laboratory and greenhouse evaluation of a new entomopathogenic strain of Beauveria bassiana for control of the onion thrips Thrips tabaci. Biocontrol Sci. Techn. 23: 794-802.
- Yakhin, O.I., A.A. Lubyanov, I.A. Yakhin, and P.H. Brown. 2017. Biostimulants in plant science: a global perspective. Front. Plant Sci. 7: 2049.