Abstracts
Abstract
Most studies were focused on the salt-resistance physiology by humic acid (HA) for strawberry in the past. For advancely verifying the remission of salt injury by humic acid, this study was conducted to evaluate K+/Na+ in the strawberry and observe cell morphology of strawberry after treatment of salt concentrations (0 and 50 mg kg-1) and HA (0, 150 and 300 mg kg-1). The results showed that the treatments of humic acid will increase the absorption of K+ (potassium ion) and reduce Na+ (sodium ion), and hence increase K+/Na+ in the root and leaf of strawberry. By the observing of SEM (scanning electron microscopy) and TEM (transmission electron microscopy), under no salt treatments, no matter the additive concentration of humic acid, the root apices of strawberries were normal and integrity. However, in the treatments of high salt concentration, the shrinking and cracking of cells in root apices of strawberries were serious and gradually getting integrity and normal after adding humic acids from 150 to 300 mg kg-1. These results showed that the appropriate treating concentration of humic acid will inhibit the salt injury on root apices of strawberries.
Keywords:
- salt injury,
- K+/Na+,
- cell morphology,
- microscopy,
- humic acid
Résumé
La plupart des études antérieures sur la fraise se sont concentrées sur la résistance au sel par l’acide humique (AH). Pour vérifier l’atténuation des lésions salines par l’acide humique, cette étude vise à évaluer le ratio K+/Na+ chez la fraise et à observer la morphologie cellulaire de la fraise face à différentes concentrations de sel (0 et 50 mg kg-1) et d’AH (0, 150 et 300 mg kg-1). Les résultats indiquent que les traitements à l’acide humique augmentent l’absorption de K+ (ion potassium), réduisent le Na+ (ion sodium), et augmentent donc le ratio K+/Na+ dans la racine et la feuille de la fraise. Par l’observation en MEB (microscopie électronique à balayage) et en MET (microscopie électronique à transmission), sans aucun traitement au sel, quelle que soit la concentration additionnelle d’acide humique, les apex racinaires des fraises étaient normaux et intègres. Cependant, dans les traitements à forte concentration de sel, le rétrécissement et la fissuration des cellules dans les apex racinaires des fraises étaient graves et devenaient progressivement intègres et normaux après l’ajout d’acides humiques de 150 à 300 mg kg-1. Ces résultats démontrent qu’une concentration appropriée en acide humique inhibe les dommages causés par le sel sur les apex racinaires des fraises.
Mots-clés :
- lésion saline,
- K+/Na+,
- morphologie cellulaire,
- microscopie,
- acide humique
Appendices
REFERENCES
- Al-Shorafa, W., A. Mahadeen, and K. Al-Absi. 2014. Evaluation for salt stress tolerance in two strawberry cultivars. Am. J. Agric. Biol. Sci. 9: 334-341.
- Antoun, L.W., S.M. Zakaria, and H.H. Rafla. 2010. Influence of compost, N-mineral and humic acid on yield and chemical composition of wheat plants. J. Soil Sci. Agric. Engi. 1: 1131-1143.
- Assaha, D.V.M., A. Ueda, H. Saneoka, R. Al-Yahyai, and M.W. Yaish. 2017. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 8: 509. .
- Aydin, A., C. Kant, and M. Turan. 2012. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr. J. Agric. Res. 7: 1073-1086.
- Canellas, L.P., and F.L. Olivares. 2014. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric. 1: 3-13.
- Fahad, S., S. Hussain, A. Matloob, F.A. Khan, A. Khaliq, S. Saud, S. Hassan, D. Shan, F. Khan, N. Ullah, M. Faiq, M.R. Khan, A.K. Tareen, A. Khan, A. Ullah, N. Ullah, and J. Huang. 2015. Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul. 75: 391-404.
- Fahad, S., L. Nie, Y. Chen, C. Wu, D. Xiong, S. Saud, L. Hongyan, K. Cui, and J. Huang. 2015. Crop plant hormones and environmental stress. Sustain. Agric. Rev. 15: 371-400.
- Hoagland, D.R., and D.L. Arnon. 1938. The water-culture method for growing plants without soil. Calif. Agric. Exp. Stn. Circ. 347: 1-24.
- Jamil, M., M. Ashraf, S. Rehman, M. Ahmad, and E.S. Rha. 2012. Salinity induced changes in cell membrane stability, protein and RNA contents. Afr. J. Biotechnol. 11: 6476-6483.
- Jindo, K., S.A. Martim, E.C. Navarro, F. Pérez-Alfocea, T. Hernandez, C. Garcia, N.O. Aguiar, and L.P. Canellas. 2012. Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant Soil 353: 209-220.
- Kaya, C., B. Erol Ak, and D. Higgs. 2003. Response of salt‐stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. J. Plant Nutr. 26: 543-560.
- Kaya, C., D. Higgs, K. Saltali, and O. Gezerel. 2015. Response of strawberry grown at high salinity and alkalinity to supplementary potassium. J. Plant Nutr. 25: 1415-1427.
- Khaled, H., and H.A. Fawy. 2011. Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil Water Res. 6: 21-29.
- Khosravinejad, F., R. Heydari, and T. Farboodnia. 2008. Effects of salinity on photosynthetic pigments, respiration, and water content in two barley varieties. Pak. J. Biol. Sci. 11: 2438-2442.
- Kumar, D., A.P. Singh, P. Raha, A. Rakshit, C.M. Singh, and P. Kishor. 2013. Potassium humate: a potential soil conditioner and plant growth promoter. Int. J. Agric. Environ. Biotechnol. 6: 441-446.
- Martyniuk, H., and J. Więckowska. 2003. Adsorption of metal ions on humic acids extracted from brown coals. Fuel Process. Technol. 84: 23-36.
- Mindari, W., P.E. Sasongko, K.Z. Syekhfani, and N. Aini. 2019. The 9th International Conference on Global Resource Conservation (ICGRC) and AJI from Ritsumeikan University. 18 p.
- Miyasaka, S.C., and M. Hawes. 2001. Possible role of root border cells in detection and avoidance of aluminum toxicity. Plant. Physiol. 125: 1978-1987.
- Munns, R., and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681.
- Nardi, S., A. Muscolo, S. Vaccaro, S. Baiano, R. Spaccini, and A. Piccolo. 2007. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biol. Biochem. 39: 3138-3146.
- Neinhuis, C., and H.G. Edelmann. 1996. Methanol as a rapid fixative for the investigation of plant surfaces by SEM. J. Microsc. 184: 14-16.
- Neumann, P.M., H. Azaizeh, and D. Leond. 1994. Hardening of root cell walls: a growth inhibitory response to salinity stress. Plant Cell Environ. 17: 303-309.
- Porcelli, C.A., F.H. Gutierrez Boem, and R.S. Lavado. 1995. The K/Na and Ca/Na ratios and rapeseed yield under soil salinity or sodicity. Plant Soil 175: 251-255.
- Ramos, A.C., L.B. Dobbss, L.A. Santos, M.S. Fernandes, F.L. Olivares, N.O. Aguiar, and L.P. Canellas. 2015. Humic matter elicits proton and calcium fluxes and signaling dependent on Ca2+-dependent protein kinase (CDPK) at early stages of lateral plant root development. Chem. Biol. Technol. Agric. 2: 3.
- Saidimoradi, D., N. Ghaderi, and T. Javadi. 2019. Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch.). Sci. Hortic. 256: 108594.
- Saied, A.S., A.J. Keutgen, and G. Noga. 2005. The influence of NaCl salinity on growth, yield and fruit quality of strawberry cvs. ‘Elsanta’ and ‘Korona’. Sci. Hortic. 103: 289-303.
- Sun, Y.P., G.H. Niu, R. Wallace, J. Masabni, and M.M. Gu. 2015. Relative salt tolerance of seven strawberry cultivars. Hortic. 1: 27-43.
- Sobahan, M.A., C.R. Arias, E. Okuma, Y. Shimoihhi, Y. Nakamura, Y. Hiyai, I.C. Mori, and Y. Murata. 2009. Exogenous proline and glycinebetaine suppress apoplastic flow to reduce Na+ uptake in rice seedlings. Biosci. Biotechnol. Biochem. 73: 2037-2042.
- Tanou, G., C. Job, L. Rajjou, E. Arc, M. Belghazi, G. Diamantidis, A. Molassiotis, and D. Job. 2009. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J. 60: 795-804.
- Trevisan, S., O. Francioso, S. Quaggiotti, and S. Nardi. 2010. Humic substances biological activity at the plant-soil interface. Plant Signal. Behav. 6: 635-643.
- Vaughan, D. 1974. A possible mechanism for humic acid action on cell elongation in root segments of Pisum sativum under aseptic conditions. Soil Biol. Biochem. 6: 241-247.
- Verma, S., and S.N. Mishra. 2005. Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. J. Plant Physiol. 162: 669-677.
- Wani, S.H., and S.S. Gosal. 2011. Introduction of OsglyII gene into Oryza sativa for increasing salinity tolerance. Biol. Plant. 55: 536-540.
- Wang, M., Q.S. Zheng, Q.R. Shen, and S.W. Guo. 2013. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 14: 7370-7390.
- Watson, R., J. Pritchard, and M. Malone. 2001. Direct measurement of sodium and potassium in the transpiration stream of salt‐excluding and non‐excluding varieties of wheat. J. Exp. Bot. 52: 1873-1881.
- Yilmaz, H., and A. Kina. 2008. The influence of NaCl salinity on some vegetative and chemical changes of strawberries (Fragaria x ananssa L.). Afr. J. Biotechnol. 7: 3299-3305.
- Xipell, E., M. Gonzalez-Huarriz, J.J. Martinez de Irujo, A. García-Garzón, F.F. Lang, H. Jiang, J. Fueyo, C. Gomez-Manzano, and M.M. Alonso. 2016. Salinomycin induced ROS results in abortive autophagy and leads to regulated necrosis in glioblastoma. Oncotarget 7: 30626-30641.
- Yeo, A.R. 2006. Salinity resistance: physiologies and prices. Physiol. Plant. 58: 214-222.