Abstracts
Résumé
L’ajustement osmotique, les pigments photosynthétiques et les changements d’activités des antioxydants enzymatiques ont été évalués chez dix génotypes de blé dur (Triticum durum) soumis à des conditions de stress hydrique. Les plantules de blé ont germé en hydroponie, en chambre de culture. Le stress hydrique a été appliqué aux quatrième et cinquième stades de la feuille par l’ajout d’une solution de polyéthylène glycol (PEG 6000) (-0,49 MPa). Le potentiel osmotique ainsi que la teneur en chlorophylle totale (Chl a+b) et en caroténoïdes (Car) ont été déterminés. Des analyses électrophorétiques ont été effectuées pour trois enzymes antioxydantes, soit la superoxyde dismutase (SOD), la guaïacol peroxydase (GPOX) et la catalase (CAT), en utilisant l’électrophorèse sur gel de polyacrylamide (PAGE) en conditions natives. Les résultats obtenus montrent une réduction du potentiel osmotique foliaire et une diminution de Chl a+b et Car sous l’effet du stress hydrique. Toutefois, il existe des différences significatives entre les génotypes étudiés en réponse au traitement imposé. PAGE a permis de montrer une augmentation dans l’intensité des enzymes étudiées et une apparition d’isoformes supplémentaires, dont une de CAT et trois de SOD, en conditions de stress. Ces différences dans les réponses au stress hydrique pourraient être des indices utiles et fiables pour la sélection de génotypes tolérants de blé dur.
Mots-clés :
- accumulation d’osmolytes,
- chlorophylles,
- déficit hydrique,
- isozymes,
- peroxydation lipidique,
- stress oxydatif
Abstract
Osmotic adjustment, photosynthetic pigments and changes in antioxidant enzyme activities were evaluated in ten durum wheat (Triticum durum) genotypes under water stress conditions. The wheat seedlings germinated in hydroponic conditions in a growth chamber. Water deficit was performed at the fourth and fifth leaf stages using a polyethylene glycol (PEG 6000) solution (-0.49 MPa). Osmotic potential as well as total chlorophyll (Chl a+b) and carotenoid (Car) contents were investigated. Electrophoretic analyses were performed for three antioxidant enzymes: superoxide dismutase (SOD), guaiacol peroxidase (GPOX) and catalase (CAT) using native polyacrylamide gel electrophoresis (PAGE). The results obtained show a reduction in leaf osmotic potential and a decrease in Chl a+b and Car contents under water stress conditions. However, there are significant differences between the genotypes studied in their response to the treatment. PAGE showed an increased intensity in the enzymes studied and the appearance of additional isoforms, including one CAT and three SOD, under stress conditions. These differences in water stress response could be useful and reliable indices for the selection of tolerant durum wheat genotypes.
Keywords:
- chlorophylls,
- isozymes,
- lipid peroxidation,
- osmolyte accumulation,
- oxidative stress,
- water deficit
Appendices
Références
- Adams I., W.W., B. Demmig-Adams, B.A. Logan, D.H. Barker et C.B. Osmond. 1999. Rapid changes in xanthophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the understory of an open Eucalyptus forest. Plant Cell Environ. 22 : 125-136. doi:10.1046/j.1365-3040.1999.00369.x
- Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24 : 1-15.
- Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 : 601-639. doi:10.1146/annurev.arplant.50.1.601.
- Ashraf, M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27 : 84-93. doi:10.1016/j.biotechadv. 2008.09.003
- Baaziz, M. 1989. The activity and preliminary characterization of peroxidases in leaves of cultivars of date palm, Phoenix dactylifera L. New Phytol. 111 : 403-411. doi:10.1111/j.1469-8137.1989.tb00703.x
- Baaziz, M., N. Qacif, K. Bendiab et A. Aouad. 2006. Les peroxydases des plantes : Aspect théorique et applications pratiques. Pages 17-21 dans Société Marocaine de Biochimie et Biologie Moléculaire (éd.), Compte-rendu du 2e Congrès International de Biochimie, Agadir, Maroc.
- Bajji, M., S. Lutts et J.-M. Kinet. 2001. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions. Plant Sci. 160 : 669-681.
- Batra, N.G., V. Sharma et N. Kumari. 2014. Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. J. Plant Interact. 9 : 712-721.
- Belkharchouche, H., A. Benbelkacem, H. Bouzerzour et A. Benmahammed. 2015. Flag leaf and awns ablation and spike shading effects on spike yield and kernel weight of durum wheat (Triticum turgidum L. var. durum) under rainfed conditions. Adv. Environ. Biol. 9 : 184-191.
- Blokhina, O., E. Virolainen et K.V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 91 : 179-194.
- Bouchemal, K., R. Bouldjadj, M.N. Belbekri, N. Ykhlef et A. Djekoun. 2017. Differences in antioxidant enzyme activities and oxidative markers in ten wheat (Triticum durum Desf.) genotypes in response to drought, heat and paraquat stress. Arch. Agron. Soil Sci. 63 : 710-722. doi:10.1080/03650340.2016.1235267
- Bousba, R., M. Baum, A. Jighly, A. Djekoune, S. Lababidi, A. Benbelkacem, M. Labhilili, F. Gaboun et N. Ykhlef. 2013a. Association analysis of genotypic and phenotypic traits using SSR marker in durum wheat. Online Int. Interdiscip. Res. J. 3 : 60-79.
- Bousba, R., A. Djekoun, S. Duraa et N. Ykhlef. 2013b. Caractérisation moléculaire et association marqueur SSR phénotype pour la tolérance au stress hydrique chez le blé dur (Triticum durum Desf.). Eur. Sci. J. 9 : 186-201.
- Broughton, W.J. et M.J. Dilworth. 1971. Control of leghaemoglobin synthesis in snake beans. Biochem J. 125 : 1075-1080. doi:10.1042/bj1251075
- Chahbar, S. et M. Belkhodja. 2016. Water deficit effects on osmolyts traits in five durum wheat varieties (Triticum durum). Int. J. Innovation Appl. Stud. 17 : 757-767.
- Cha-Um, S., S. Yooyongwech et K. Supaibulwatana. 2010. Water deficit stress in the reproductive stage of four indica rice (Oryza sativa L.) genotypes. Pak. J. Bot. 42 : 3387-3398.
- Chennafi, H., A. Aidaoui, H. Bouzerzour et A. Saci. 2006. Yield response of durum wheat (Triticum durum Desf.) cultivar Waha to deficit irrigation under semi arid growth conditions. Asian J. Plant Sci. 5 : 854-860.
- Clifford, S.C., S.K. Arndt, J.E. Corlett, S. Joshi, N. Sankhla, M. Popp et H.G. Jones. 1998. The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in Ziziphus mauritiana (Lamk.). J. Exp. Bot. 49 : 967-977. doi:10.1093/jxb/49.323.967
- Efeoğlu, B., Y. Ekmekçi et N. Çiçek. 2009. Physiological responses of three maize cultivars to drought stress and recovery. S. Afr. J. Bot. 75 : 34-42. doi:10.1016/ j.sajb.2008.06.005
- Fath, A., P. Bethke, V. Beligni et R. Jones. 2002. Active oxygen and cell death in cereal aleurone cells. J. Exp. Bot. 53 : 1273-1282.
- Gadallah, M.A.A. 1999. Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biol. Plant. 42 : 249-257. doi:10.1023/A:1002164719609
- Gill, S.S. et N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48 : 909-930. doi:10.1016/ j.plaphy.2010.08.016
- Hammad, S.A.R. et O.A.M. Ali. 2014. Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Ann. Agric. Sci. 59 : 133-145. doi:10.1016/j.aoas.2014.06.018.
- Hongbo, S., L. Zongsuo et S. Mingan. 2006. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids Surf. B. 47 : 132-139. doi:10.1016/ j.colsurfb.2005.11.028
- Huseynova, I.M., D.R. Aliyeva et J.A. Aliyev. 2014. Subcellular localization and responses of superoxide dismutase isoforms in local wheat varieties subjected to continuous soil drought. Plant Physiol. Biochem. 81 : 54-60. doi:10.1016/j.plaphy.2014.01.018
- Huseynova, I.M., D.R. Aliyeva, A.C. Mammadov et J.A. Aliyev. 2015. Hydrogen peroxide generation and antioxidant enzyme activities in the leaves and roots of wheat cultivars subjected to long-term soil drought stress. Photosyn. Res. 125 : 279-289. doi:10.1007/s11120-015-0160-7
- Kacem, N.S., S. Mauro, Y. Muhovski, F. Delporte, J. Renaut, A. Djekoun et B. Watillon. 2016. Diagonal two-dimensional electrophoresis (D-2DE): A new approach to study the effect of osmotic stress induced by polyethylene glycol in durum wheat (Triticum durum Desf.). Mol. Biol. Rep. 43 : 897-909. doi:10.1007/s11033-016-4028-5
- Khalilzadeh, R., R.S. Sharifi et J. Jalilian. 2016. Antioxidant status and physiological responses of wheat (Triticum aestivum L.) to cycocel application and bio fertilizers under water limitation condition. J. Plant Interact. 11 : 130-137. doi:10.1080/17429145.2016.1221150
- Khayatnezhad, M., R. Gholamin, S.J. Somarin et R.Z. Mahmoodabad. 2011. Scrutiny of hexaploid and tetraploid (Triticum durum) wheat’s genotypes to some physiological responses in drought stress. Middle-East J. Sci. Res. 7 : 12-16.
- Kiani, S.P., P. Maury, A. Sarrafi et P. Grieu. 2008. QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci. 175 : 565-573. doi:10.1016/ j.plantsci.2008.06.002
- Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 : 680-685. doi:10.1038/227680a0
- Larbi, A. 2004. Relative water content (RWC) and leaf senescence as screening tools for drought tolerance in wheat. Pages 193-196 dans Cantero-Martinez, C. et D. Gabina (éds.), Mediterranean rainfed agriculture: Strategies for sustainability. Séminaires Méditerranéens no 60. Centre international de hautes études agronomiques méditerranéennes, Paris, France.
- Levy, D., E. Fogelman, Y. Itzhak, Q. Ma, D.W. Turner et W. Cowling. 2006. Osmotic adjustment in leaves of Brassica oilseeds in response to water deficit. Can. J. Plant Sci. 86 : 389-397. doi:10.4141/P05-105
- Lichtenthaler, H.K. et A.R. Wellburn. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11 : 591-592. doi:10.1042/bst0110591
- Liu, C., Y. Liu, K. Guo, D. Fan, G. Li, Y. Zheng, L. Yu et R. Yang. 2011. Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ. Exp. Bot. 71 : 174-183. doi:10.1016/j.envexpbot.2010.11.012
- Mascher, R., E. Nagy, B. Lippmann, S. Hörnlein, S. Fischer, W. Scheiding, A. Neagoe et H. Bergmann. 2005. Improvement of tolerance to paraquat and drought in barley (Hordeum vulgare L.) by exogenous 2-aminoethanol: effects on superoxide dismutase activity and chloroplast ultrastructure. Plant Sci. 168 : 691-698. doi:10.1016/ j.plantsci.2004.09.036
- Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7 : 405-410. doi:10.1016/S1360-1385(02)02312-9
- Morgan, J.M. 1984. Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 35 : 299-319. doi:10.1146/annurev.pp.35.060184.001503
- Nabizadeh, H., M. Valizadeh, M. Norouzi, M. Toorchi et M.B. Vajovi. 2015. Effect of different levels of NaCl salinity on antioxidant enzyme’s activity in seedling of different wheat cultivars. Biol. Forum 7 : 180-186.
- Naderi, R., M. Valizadeh, M. Toorchi et M.R. Shakiba. 2014. Antioxidant enzyme changes in response to osmotic stress in wheat (Triticum aestivum L.) seedling. Acta Biol. 58 : 95-101.
- Noctor, G., S. Veljovic-Jovanovic, et C.H. Foyer. 2000. Peroxide processing in photosynthesis: antioxidant coupling and redox signalling. Philos. Trans. R. Soc. Lond. Ser. B. 355 : 1465-1475.
- Ozkur, O., F. Ozdemir, M. Bor et I. Turkan. 2009. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ. Exp. Bot. 66 : 487-492. doi:10.1016/j.envexpbot.2009.04.003
- Paknejad, F., M. Nasri, H.R.T. Moghadam, H. Zahedi et M.J. Alahmadi. 2007. Effects of drought stress on chlorophyll fluorescence parameters, chlorophyll content and grain yield of wheat cultivars. J. Biol. Sci. 6 : 841-847.
- Paleg, L.G. et D. Aspinall. 1981. The physiology and biochemistry of drought resistance in plants. Academic Press, Sidney, Australia.
- Pérez, F.J. et W. Lira. 2005. Possible role of catalase in post-dormancy bud break in grapevines. J. Plant Physiol. 162 : 301-308. doi:10.1016/j.jplph.2004.07.011
- Poulik, M.D. 1957. Starch gel electrophoresis in a discontinuous system of buffers. Nature 180 : 1477-1479. doi:10.1038/1801477a0
- Reddy, A.R., K.V. Chaitanya et M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161 : 1189-1202. doi:10.1016/j.jplph.2004.01.013
- Sairam, R.K., K.V. Rao et G.C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163 : 1037-1046. doi:10.1016/S0168-9452(02)00278-9
- Salmi, M., L. Haddad, A. Oulmi, A. Benmahammed et A. Benbelkacem. 2015. Variabilité phénotypique et sélection des caractères agronomiques du blé dur (Triticum durum Desf.) sous conditions semi-arides. Eur. Sci. J. 11 : 99-111.
- Santarius, K.A. 1973. The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance. Planta 113 : 105-114. doi:10.1007/BF00388196
- Shah, A.R., T.M. Khan, H.A. Sadaquat et A.A. Chatha. 2011. Alterations in leaf pigments in cotton (Gossypium hirsutum) genotypes subjected to drought stress conditions. Int. J. Agric. Biol. 13 : 902-908.
- Slama, A., M.B. Salem, M.B. Naceur et E. Zid. 2005. Les céréales en Tunisie : production, effet de la sécheresse et mécanismes de résistance. Sci. Chang. Planet. 16 : 225-229.
- Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125 : 27-58. doi:10.1111/j.1469-8137.1993.tb03863.x
- Valizadeh, M., M. Mohayeji, N. Yasinzadeh, S. Nasrullazadeh et M. Moghaddam. 2011. Genetic diversity of synthetic alfalfa generations and cultivars using tetrasomic inherited allozyme markers. J. Agric. Sci. Technol. 13 : 425-430.
- Wendel, J.F. et N.F. Weeden. 1989. Visualization and interpretation of plant isozymes. Pages 5-45 dans Soltis, D.E. et P.S. Soltis (éds.), Isozymes in plant biology. Chapman and Hall, London, UK. doi:10.1007/978-94-009-1840-5_2
- Weng, M., L. Cui, F. Liu, M. Zhang, L. Shan, S. Yang et V. Deng. 2015. Effects of drought stress on antioxidant enzymes in seedlings of different wheat genotypes. Pak. J. Bot. 47 : 49-56.
- Woodbury, W., A.K. Spencer et M.A. Stahmann 1971. An improved procedure using ferricyanide for detecting catalase isozymes. Anal. Biochem. 44 : 301-305. doi:10.1016/0003-2697(71)90375-7
- Yoshida, K., P. Kaothien, T. Matsui, A. Kawaoka, et A. Shinmyo. 2003. Molecular biology and application of plant peroxidase genes. Appl. Microbiol. Biotechnol. 60 : 665-670. doi:10.1007/s00253-002-1157-7
- Zwiazek, J.J. et T.J. Blake. 1990. Effects of preconditioning on carbohydrate and amino acid composition of osmotically stressed black spruce (Picea mariana) cuttings. Can. J. For. Res. 20 : 108-112. doi:10.1139/x90-015