Abstracts
Abstract
The exotic invasive Ambrosia artemisiifolia L. and a native co-occurring species in southern China, Urena lobata L., were compared to investigate the possible protective role of leaf antioxidant systems in the acclimation of invasive plants to different irradiance levels. Antioxidant activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were examined under four irradiance regimes: 10% (dense shade), 30% (low irradiance), 55% (medium irradiance) and 100% (full irradiance). Free proline (Pro) content and the rate of lipid peroxidation in terms of malondialdehyde (MDA) content, glutathione reductase (GR), and tea polyphenols (TP) were also assessed under the different irradiance regimes. Antioxidant enzyme activity of SOD and CAT and the MDA, GR and TP contents for the two species increased with increasing irradiance levels. Invasive A. artemisiifolia was able to scavenge oxygen radicals more efficiently at higher irradiance levels by enhancing CAT activity and GR and TP contents although leaf SOD activity was not greatly enhanced. This exotic species also maintained normal physiological functions when subjected to low irradiance, which might be attributed to the increase in POD activity with decreasing irradiance levels. The higher efficiency of adaptive responses of antioxidant enzymes may protect plants from irradiance-induced stress and may contribute to the invasiveness of A. artemisiifolia in subtropical and tropical regions.
Keywords:
- Abiotic stress,
- Ambrosia artemisiifolia,
- antioxidative enzymes,
- common ragweed,
- invasive plants,
- irradiance,
- lipid peroxidation,
- Urena lobata
Résumé
Dans le sud de la Chine, l’espèce exotique envahissante Ambrosia artemisiifolia L. a été comparée à une espèce indigène compagne, Urena lobata L., afin d’évaluer le rôle protecteur potentiel fourni par les systèmes antioxydants de la feuille lors de l’acclimatation des plantes envahissantes soumises à différents taux de flux énergétique. Les activités antioxydants de la superoxyde dismutase (SOD), de la peroxydase (POD) et de la catalase (CAT) ont été examinées sous quatre régimes de flux énergétique : 10 % (ombrage dense), 30 % (faible flux énergétique), 55 % (flux énergétique moyen) et 100 % (flux énergétique complet). Le contenu en proline libre (Pro) et le taux de peroxydation lipidique en termes de malonaldéhyde (MDA), de réductase de glutathion (RG) et de polyphénols de thé (PT) ont également été évalués pour différents taux de flux énergétique. Les activités enzymatiques antioxydantes de SOD et de CAT et les contenus en MDA, RG et PT des deux espèces ont augmenté avec l’augmentation des taux de flux énergétique. L’espèce invasive A. artemisiifolia était en mesure de récupérer les radicaux d’oxygène plus efficacement à un taux de flux énergétique plus élevé grâce à une activité accrue de la CAT et des contenus de RG et PT plus élevés, bien que l’activité de la SOD dans la feuille n’ait pas beaucoup augmentée. Cette espèce exotique a également maintenu des fonctions physiologiques normales lorsque soumise à de faible taux de flux énergétique, ce qui pourrait être attribuable à l’augmentation de l’activité de la POD en lien avec une diminution du taux de flux énergétique. Une plus grande efficacité des réactions adaptatives des enzymes antioxidants pourrait protéger les plantes du stress relié au flux énergétique et contribuer à l’envahissement de l’A. artemisiifolia dans les régions tropicales et subtropicales.
Mots clés:
- Ambrosia artemisiifolia,
- enzymes antioxydants,
- flux énergétique,
- peroxydation lipidique,
- petite herbe à poux,
- plantes envahissantes,
- stress abiotique,
- Urena lobata
Appendices
References
- Ali, M.B., E.J. Hahn, and K.Y. Paek. 2005. Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated Phalaenopsis plantlet. Environ. Exp. Bot. 54 : 109-120.
- Alpert, P., E. Bone, and C. Holzapfel. 2000. Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Perspect. Plant Ecol. Evol. Syst. 3 : 52-66.
- Alscher, R.G. 1989. Biosynthesis and antioxidant function of glutathione in plants. Physiol. Plant. 77 : 457-464.
- Asada, K. 1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 : 601-639.
- Ashraf, M., and M.R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 59 : 206-216.
- Bajji, M., J.-M. Kinet, and S. Lutts. 2002. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 36 : 61-70.
- Bassett, I.J., and C.W. Crompton. 1975. The biology of Canadian weeds: 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Can. J. Plant Sci. 55 : 463-476.
- Bates, L.S., R.P. Waldren, and I.D. Teare. 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39 : 205-207.
- Beauchamp, C., and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44 : 276-287.
- Blum, A., and A. Ebercon. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 21 : 43-47.
- Bowler, C., M.V. Montagu, and D. Inze. 1992. Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43 : 83-116.
- Chance, B., and A.C. Maehly. 1955. Assay of catalases and peroxidases. Methods Enzymol. 2 : 764-775.
- Chazdon, R.L., and R.W. Pearcy. 1986. Photosynthetic responses to light variation in rainforest species. I. Induction under constant and fluctuating light conditions. Oecologia 69 : 517-523.
- Cheeseman, J.M. 2007. Hydrogen peroxide and plant stress: a challenging relationship. Plant Stress 1 : 4-15.
- Clements, D.R., and A. DiTommaso. 2011. Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res. 51 : 227-240.
- Davis, M.A., J.P. Grime, and K. Thompson. 2000. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88 : 528-534.
- Demmig-Adams, B., and W.W. Adams. 1992. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43 : 599-626.
- Feng, Y.L. 2008. Photosynthesis, nitrogen allocation and specific leaf area in invasive Eupatorium adenophorum and native Eupatorium japonicum grown at different irradiances. Physiol. Plant. 133 : 318-326.
- Feng, Y.L., H. Auge, and S.K. Ebeling. 2007. Invasive Buddleja davidii allocates more nitrogen to its photosynthetic machinery than five native woody species. Oecologia 153 : 501-510.
- Fumanal, B., C. Girod, G. Fried, F. Bretagnolle, and B. Chauvel. 2008. Can the large ecological amplitude of Ambrosia artemisiifolia explain its invasive success in France? Weed Res. 48 : 349-359.
- Grace, S.C., and B.A. Logan. 1996. Acclimation of foliar antioxidant systems to growth irradiance in three broad-leaved evergreen species. Plant Physiol. 112 : 1631-1640.
- Heath, R.L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125 : 189-198.
- Hernández, J.A., A. Jiménez, P. Mullineaux, and F. Sevilia. 2000. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ. 23 : 853-862.
- Jain, M., G. Mathur, S. Koul, and N.B. Sarin. 2001. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Rep. 20 : 463-468.
- Kartashov, A., N. Radyukina, Y. Ivanov, P. Pahkovskii, N. Shvyakova, and V. Kuznetsov. 2008. Role of antioxidant systems in wild plant adaptation to salt stress. Russ. J. Plant Physiol. 55 : 463-468.
- Li, L., N.H. Li, S.M. Jiang, J.Y. Leng, and X.Q. Wang. 2009. Experiment guidance of plant physiology module. Science Press, Beijing, China.
- Liu, X., and B. Huang. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40 : 503-510.
- Logan, B., D. Kornyeyev, J. Hardison, and A. Holaday. 2006. The role of antioxidant enzymes in photoprotection. Photosynth. Res. 88 : 119-132.
- Mack, R.N., D. Simberloff, W.M. Lonsdale, H. Evans, M. Clout, and F.A. Bazzaz. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10 : 689-710.
- McCord, J.M. 2000. The evolution of free radicals and oxidative stress. Am. J. Med. 108 : 652-659.
- Mishra, N.P., R.K. Mishra, and G.S. Singhal. 1993. Changes in the activities of anti-oxidant enzymes during exposure of intact wheat leaves to strong visible light at different temperatures in the presence of protein synthesis inhibitors. Plant Physiol. 102 : 903-910.
- Monk, L.S., K.V. Fagerstedt, and R.M.M. Crawford. 1989. Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol. Plant. 76 : 456-459.
- Pattison, R.R., G. Goldstein, and A. Ares. 1998. Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia 117 : 449-459.
- Peever, T., and V. Higgins. 1989. Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors from Cladosporium fulvum. Plant Physiol. 90 : 867-875.
- Peters, J.L., F.J. Castillo, and R.L. Heath. 1989. Alteration of extracellular enzymes in pinto bean leaves upon exposure to air pollutants, ozone and sulfur dioxide. Plant Physiol. 89 : 159-164.
- Poorter, L. 2001. Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Funct. Ecol. 15 : 113-123.
- Premachandra, G.S., H. Saneoka, K. Fujita, and S. Ogata. 1992. Leaf water relations, osmotic adjustment, cell membrane stability, epicuticular wax load and growth as affected by increasing water deficits in sorghum. J. Exp. Bot. 43 : 1569-1576.
- Qi, G.J., D.C. Huang, Y. Gao, L. Wang, X.-Y. Shao, J-X. Sun, and L.-H. Lv. 2011. Occurrence and distribution of Ambrosia antemisiifolia [artemisiifolia] and its two natural enemies in Guangdong province. Chin. J. Appl. Entomol. 48 : 197-201.
- Sang, W., X. Liu, and J.C. Axmacher. 2011. Germination and emergence of Ambrosia artemisiifolia L. under changing environmental conditions in China. Plant Species Biol. 26 : 125-133.
- Scalet, M., R. Federico, M.C. Guido, and F. Manes. 1995. Peroxidase activity and polyamine changes in response to ozone and simulated acid rain in Aleppo pine needles. Environ. Exp. Bot. 35 : 417-425.
- Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125 : 27-58.
- Smith, I.K., T.L. Vierheller, and C.A. Thorne. 1989. Properties and functions of glutathione reductase in plants. Physiol. Plant. 77 : 449-456.
- Urquiaga, I., and F. Leighton. 2000. Plant polyphenol antioxidants and oxidative stress. Biol. Res. 33 : 55-64.
- Wan, F.H., and R. Wang. 1990. Overview of biological control of Ambrosia artemisiifolia. Chin. Weed Sci. 4 : 45-48.
- Wang, F., R.J. Wang, P.D. Zhuang, Q. Guo, and Z.-R. Li. 2009. Present status and management strategies of alien invasive plants in Guangdong province. Chin. J. Ecol. 28 : 2088-2093.
- Willekens, H., S. Chamnogpol, M. Davey, M. Schraudner, C. Langebartels, M. Van Montagu, D. Inzé, and W. Van Camp. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 16 : 4806-4816.
- Williams, D.G., and R.A. Black. 1994. Drought response of a native and introduced Hawaiian grass. Oecologia 97 : 512-519.
- Zeng, X.F., X.D. Lin, H.Y. Qiu, and X.Y. Zhuang. 2009. Investigation on alien plants in E. Guangdong. J. Fujian For. Sci. Tech. 36 : 174-179.
- Zhang, J., and M.B. Kirkham. 1994. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol. 35 : 785-791.
- Zhang, Y.S., X. Huang, and Y.F. Cheng. 2009. The instructor’s manual for plant physiology. Senior Education Press, Beijing, China.