Abstracts
Résumé
Après avoir été longtemps dépendante des pesticides, l’agriculture mondiale est aujourd’hui frappée par un courant qui favorise des pratiques plus durables et plus respectueuses de l’environnement. Pour répondre à ces nouvelles exigences, les agriculteurs doivent se tourner vers l’exploitation et la rentabilisation des ressources naturelles par le biais de pratiques agricoles combinant la performance et la protection des cultures à un moindre coût écologique. Dans ce contexte, le développement de molécules biologiques capables de stimuler les défenses naturelles des végétaux (SDN) est une stratégie qui attire de plus en plus l’attention. Une molécule SDN est un éliciteur susceptible de déclencher une série d’évènements biochimiques menant à l’expression de la résistance chez la plante. La perception du signal par des récepteurs membranaires spécifiques et sa transduction par diverses voies de signalisation conduisent à la synthèse et à l’accumulation synchronisée de molécules défensives parmi lesquelles certaines jouent un rôle structural alors que d’autres exercent une fonction antimicrobienne directe. Les barrières structurales contribuent à retarder la progression de l’agent pathogène dans les tissus de la plante et à empêcher la diffusion de substances délétères telles des enzymes de dégradation des parois ou des toxines. Les mécanismes biochimiques incluent, entre autres, la synthèse de protéines de stress et d’inhibiteurs de protéases ainsi que la production de phytoalexines, des métabolites secondaires ayant un fort potentiel antimicrobien. Les progrès remarquables accomplis ces dernières années en termes de compréhension des mécanismes impliqués dans la résistance induite chez les plantes se traduisent aujourd’hui par la commercialisation d’un nombre de plus en plus important de SDN capables de stimuler le « système immunitaire » des plantes en mimant l’effet des agents pathogènes.
Mots-clés :
- Agriculture durable,
- barrières structurales,
- éliciteur,
- inhibiteurs de protéase,
- perception du signal,
- phytoalexines,
- protection des plantes,
- protéines de stress,
- résistance induite végétale,
- SDN (stimulateurs des défenses naturelles des plantes),
- transduction du signal
Abstract
For a long time, agriculture across the world was dependent on pesticides. Today, it is influenced by a movement that favours practices that are more sustainable and environmentally safe. To meet these new demands, producers wishing to exploit natural resources and make them profitable must turn to new agronomic practices that combine culture performance and protection at a low environmental cost. In this context, the development of biological molecules able to stimulate natural defence mechanisms in plants (or SDN, for “stimulateurs des défenses naturelles des plantes”) is a strategy that attracts much attention. A SDN molecule is an elicitor capable of initiating a series of biochemical events leading to the expression of disease resistance in plants. Signal perception by ultra-specific membrane receptors and its transduction by diverse signalling pathways lead to the synthesis and synchronized accumulation of defence molecules; some of these molecules play a structural role while others have a direct antimicrobial function. Structural barriers contribute to delaying pathogen ingress in plant tissues and prevent the diffusion of deleterious substances such as cell wall hydrolytic enzymes or toxins. Biochemical mechanisms include, among others, the synthesis of stress proteins and protease inhibitors as well as the production of phytoalexins, which are secondary metabolites with a strong antimicrobial potential. The remarkable advances made over the last few years as regards our understanding of the mechanisms involved in induced resistance in plants now translate into the marketing of an increasing number of SDN molecules able to stimulate a plant’s “immune system” by mimicking the effect of pathogens.
Keywords:
- Elicitor,
- phytoalexins,
- plant induced resistance,
- plant protection,
- protease inhibitors,
- SDN (“stimulateurs des défenses naturelles des plantes”),
- signal perception,
- signal transduction,
- stress proteins,
- structural barriers,
- sustainable agriculture
Appendices
Bibliographie
- Ahuja, I., R. Kissen et A.M. Bones. 2012. Phytoalexins in defense against pathogens. Trends Plant Sci. 17 : 73-90.
- Aist, J.R. 1976. Papillae and related wound plugs of plant cells. Annu. Rev. Phytopathol. 14 : 145-163.
- Ait-Barka, E., P. Eullaffroy, C. Clément et G. Vernet. 2004. Chitosan improves development and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Rep. 22 : 608-614.
- Albert, F. et A.J. Anderson. 1987. The effect of Pseudomonas putida colonization on root surface peroxydase. Plant Physiol. 85 : 537-541.
- Aldington, S. et S.C. Fry. 1993. Oligosaccharins. Adv. Bot. Res. 19 : 1-101.
- Alström, S. 1991. Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere Pseudomonads. J. Gen. Appl. Microbiol. 37 : 495-501.
- Anderson, A.J. 1989. The biology of glycoproteins as elicitors. Pages 87-130 dans T. Kosuge et E.W. Nester (éds.), Plant–microbe interactions: Molecular and genetic perspectives. McGraw Hill, New York, É.-U.
- Arlat, M., F. Van Gijsegem, J.C. Huet, J.C. Pernollet et C.A. Boucher. 1994. PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J. 13 : 543-553.
- Assmann, S.M. 2002. Heterotrimeric and unconventional GTP binding proteins in plant cell signaling. Plant Cell 14 : 355-373.
- Aziz, A., B. Poinssot, X. Daire, M. Adrian, A. Bézier, B. Lambert, J.M. Joubert et A. Pugin. 2003. Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol. Plant-Microbe Interact. 16 : 1118-1128.
- Baier, M., A. Kandlbinder, D. Golldack et K.J. Dietz. 2005. Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ. 28 : 1012-1020.
- Barber, M.S., R.E. Bertram et J.P. Ride. 1989. Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol. Mol. Plant Pathol. 34 : 3-12.
- Baulcombe, D. 2001. Diced defense: RNA silencing. Nature 409 : 295-296.
- Baulcombe, D. 2004. RNA silencing in plants. Nature 431 : 356-363.
- Benhamou, N. 2009. La résistance chez les plantes : principes de la stratégie défensive et applications agronomiques. Lavoisier, France. 376 p.
- Benhamou, N. et R.R. Bélanger. 1998. Benzothiadiazole-mediated induced resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato. Plant Physiol. 118 : 1203-1212.
- Benhamou, N. et P.J. Lafontaine. 1995. Ultrastructural and cytochemical characterization of elicitor-induced structural responses in tomato root tissues infected by Fusarium oxysporum f. sp. radicis-lycopersici. Planta 197 : 89-102.
- Benhamou, N. et M. Nicole. 1999. Cell biology of plant immunization against microbial infection: the potential of induced resistance in controlling plant diseases. Plant Physiol. Biochem. 37 : 703-719.
- Benhamou, N., P.J. Lafontaine et M. Nicole. 1994. Induction of systemic resistance to Fusarium crown and root rot in tomato plants by seed treatment with chitosan. Phytopathology 84 : 1432-1444.
- Benhamou, N., R.R. Bélanger et T.C. Paulitz. 1996a. Ultrastructural and cytochemical aspects of the interaction between Pseudomonas fluorescens and Ri T-DNA transformed pea roots: host response to colonization by Pythium ultimum Trow. Planta 199 : 105-117.
- Benhamou, N., R.R. Bélanger et T.C. Paulitz. 1996b. Induction of differential host responses by Pseudomonas fluorescens in RiT-DNA transformed pea roots after challenge with Fusarium oxysporum f. sp. pisi and Pythium ultimum. Phytopathology 86 : 1174-1185.
- Benhamou, N., J.W. Kloepper, A. Quadt-Hallman et S. Tuzun. 1996c. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112 : 919-929.
- Benhamou, N., P. Rey, M. Chérif, J. Hockenhull et Y. Tirilly. 1997. Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology 87 : 108-122.
- Bernstein, E., A.A. Caudy, S.M. Hammond et G.J. Hannon. 2001. Role of a bidentate ribonuclease in the initiation step of RNA interference. Nature 409 : 363-366.
- Blée, E. et J. Joyard. 1996. Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroperoxides. Plant Physiol. 110 : 445-454.
- Bhuiyan, N.H., G. Selvaraj, Y. Wei et J. King. 2009. Role of lignification in plant defense. Plant Signal. Behav. 4: 158-159.
- Boller, T. 1995. Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 189-214.
- Boller, T. et G. Felix. 1996. Olfaction in plants: specific perception of common microbial molecules. Pages 1-8 dans G. Stacey, B. Mullin et P.M. Gresshoff (éds.), Biology of plant-microbe interactions. International Society for Molecular Plant-Microbe Interactions, Knoxville, É.-U.
- Bolwell, G.P. 1999. Role of active oxygen species and NO in plant defence responses. Curr. Opin. Plant Biol. 2 : 287-294.
- Bostock, R.M. 1999. Signal conflicts and synergies in induced resistance to multiple attackers. Physiol. Mol. Plant Pathol. 55 : 99-109.
- Bray, E.A. 1997. Plant responses to water deficit. Trends Plant Sci. 2 : 48-54.
- Cervone, F., M.G. Hahn, G. de Lorenzo, A. Darvill et P. Albersheim. 1989. Host-pathogen interactions. XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol. 90 : 542-548.
- Cervone, F., G. de Lorenzo, R. Pressey, A.G. Darvill et P. Albersheim. 1990. Can Phaseolus PGIP inhibit pectic enzymes from microbes and plants? Phytochemistry 29 : 447-449.
- Charles, M.T., A. Goulet et J. Arul. 2008a. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. IV. Biochemical modification of structural barriers. Postharvest Biol. Technol. 47 : 41-53.
- Charles, M.T., N. Benhamou et J. Arul. 2008b. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. III. Ultrastructural modifications and their impact on fungal colonization. Postharvest Biol. Technol. 47 : 27-40.
- Chehab, E.W. et J. Braam. 2012. Jasmonates in plant defense responses. Pages 67-88 dans G. Witzany et F. Baluska (éds.), Signaling and communication in plants, Vol. 14. Springer-Verlag, Berlin.
- Chérif, M., N. Benhamou, J.G. Menzies et R.R. Bélanger. 1992. Silicon-induced resistance in cucumber plants against Pythium ultimum. Physiol. Mol. Plant Pathol. 41 : 411-425.
- Chester, K.S. 1933. The problem with acquired physiological immunity in plants. Quart. Rev. Biol. 8 : 129-154.
- Chrisholm, S.T., G. Coaker, B. Day et B.J. Staskawicz. 2006. Host-microbe interactions: shaping and evolution of the plant immune response. Cell 124 : 803-814.
- Coll, N.S., P. Epple et J.L. Dangl. 2011. Programmed cell death in the plant immune system. Cell Death Differ. 18 : 1247-1256.
- Collmer, A. et N.T. Keen. 1986. The role of pectic enzymes in plant pathogenesis. Annu. Rev. Phytopathol. 24 : 383-409.
- Cook, B.J., R.P. Clay, C.W. Bergmann, P. Albersheim et A.G. Darvill. 1999. Fungal polygalacturonases exhibit different substrate degradation patterns and differ in their susceptibilities to polygalacturonase-inhibiting proteins. Mol. Plant-Microbe Interact. 12 : 703-711.
- Côté, F. et M.G. Hahn. 1994. Oligosaccharins: structures and signal transduction. Plant Mol. Biol. 26 : 1379-1411.
- Côté, F., K.A. Roberts et M.G. Hahn. 2000. Identification of high-affinity binding sites for the hepta-beta-glucoside elicitor in membranes of the model legumes Medicago truncatula and Lotus japonicus. Planta 211 : 596-605.
- Cvetkovska, M. et G.C. Vanlerberghe. 2012. Alternative oxidase modulates leaf mitochondrial concentrations of superoxide and nitric oxide. New Phytol. 195 : 32-39.
- Dakora, F.D. et D.A. Phillips. 1996. Diverse functions of isoflavonoids in legume transcend anti-microbial definitions of phytoalexins. Physiol. Mol. Plant Pathol. 49 : 1-20.
- Darvill, A. et P. Albersheim. 1984. Phytoalexins and their elicitors - a defense against microbial infection in plants. Annu. Rev. Plant Physiol. 35 : 243-275.
- Dat, J., S. Vandenabeele, E. Vranová, M. Van Montagu, D. Inzé et F. Van Breusegem. 2000. Dual action of active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57 : 779-795.
- Delaney, T.P., S. Uknes, B. Vernooij, L. Friedrich, K. Weymann, D. Negrotto, T. Gaffney, M. Gut-Rella, H. Kessmann, E. Ward et J. Ryals. 1994. A central role of salicylic acid in plant disease resistance. Science 266 : 1247-1250.
- Denness, L., J.F. McKenna, C. Segonzac, A. Wormit, P. Madhou, M. Bennett, J. Mansfield, C. Ziepfel et T. Hamann. 2011. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 156: 1364-1374.
- De Wit, P.J.G.M. 2007. How plants recognize pathogens and defend themselves. Cell. Mol. Life Sci. 64 : 2726-2732.
- Dhondt, S., P. Geoffroy, B.A. Stelmach, M. Legrand et T. Heitz. 2000. Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes. Plant J. 23 : 431-440.
- Dixon, R.A., M.J. Harrison et C.J. Lamb. 1994. Early events in the activation of plant defense responses. Annu. Rev. Phytopathol. 32 : 479-501.
- Dixon, R.A., M.J. Harrison et N.L. Paiva. 1995. The isoflavonoid phytoalexin pathway: from enzymes to genes to transcription factors. Physiol. Plant. 93 : 385-392.
- Doares, S.H., T. Syrovets, E.W. Weiler et C.A. Ryan. 1995. Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 92 : 4095-4098.
- Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant Biol. 1 : 316-323.
- Dunoyer, P., C. Himber et O. Voinnet. 2005. DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat. Genet. 37 : 1356-1360.
- Ebel, J. et E.G. Cosio. 1994. Elicitors of plant defense responses. Int. Rev. Cytol. 148 : 1-36.
- Fawe, A., M. Abou-Zaid, J.G. Menzies et R.R. Bélanger. 1998. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88 : 396-401.
- Felix, G., M. Regenass, P. Spanu et T. Boller. 1994. The protein phosphatase inhibitor calyculin A mimics elicitor action in plant cells and induces rapid hyperphosphorylation of specific proteins as revealed by pulse labeling with [33P] phosphate. Proc. Natl. Acad. Sci. USA 91 : 952-956.
- Flor, H.H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9 : 275-296.
- Fofana, B., N. Benhamou, D. McNally, C. Labbé, A. Séguin et R.R. Bélanger. 2005. Suppression of induced resistance in cucumber through disruption of the flavonoid pathway. Phytopathology 95 : 114-123.
- Foissner, I., D. Wendehenne, C. Langebartels et J. Durner. 2000. In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J. 23 : 817-824.
- Foyer, C.H. et G. Noctor. 2005. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 28 : 1056-1071.
- Gaffney, T., L. Friedrich, B. Vernooij, D. Negrotto, G. Nye, S. Uknes, E. Ward, H. Kessmann et J. Ryals. 1993. Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261 : 754-756.
- Garcia-Brugger, A., O. Lamotte, E. Vandelle, S. Bourque, D. Lecourieux, B. Poinssot, D. Wendehenne et A. Pugin. 2006. Early signaling events induced by elicitors of plant defenses. Mol. Plant-Microbe Interact. 19 : 711-724.
- Gianinazzi, S., J.C. Martin et J.C. Vallée. 1970. Hypersensibilité aux virus, température et protéines solubles chez Nicotiana xanthi n.c. Apparition de nouvelles macromolécules lors de la répression de la synthèse virale. C. R. Acad. Sci. Paris 270 : 2383-2386.
- Gnanamanickam, S.S. et S.S. Patil. 1977. Accumulation of antibacterial isoflavonoids in hypersensitively responding bean leaf tisues inoculated with Pseudomonas phaseolicola. Physiol. Plant Pathol. 10 : 159-168.
- Gough, C.L., S. Genin, C. Zischek et C.A. Boucher. 1992. Hrp genes of Pseudomonas solanacearum are homologous to pathogenicity determinants of animal pathogenic bacteria and are conserved among plant pathogenic bacteria. Mol. Plant-Microbe Interact. 5 : 384-389.
- Hadwiger, L.A. 1999. Host–parasite interactions: elicitation of defence responses in plants with chitosan. EXS 87 : 185-200.
- Hadwiger, L.A., T. Ogawa et H. Kuyama. 1994. Chitosan polymer sizes effective in inducing phytoalexin accumulation and fungal suppression are verified with synthesized oligomers. Mol. Plant-Microbe Interact. 7 : 531-533.
- Hahn, M.G., P. Bucheli, F. Cervone, S.H. Doares, R.A. O’Neill, A.G. Darvill et P. Albersheim. 1989. The role of cell wall constituents in plant-pathogen interactions. Pages 131-181 dans T. Kosuge et E.W. Nester (éds.), Plant–microbe interactions: Molecular and genetic perspectives. McGraw Hill, New York, É.-U.
- Hain, R., H.J. Reif, E. Krause, R. Langebartels, H. Kindl, B. Vornam, W. Wiese, E. Schmelzer, P.H. Schreier, R.H. Stöcker et K. Strenzel. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361 : 153-156.
- Heidel, A.J. et I.T. Baldwin. 2004. Microarray analysis of salicylic acid- and jasmonic acid-signalling in responses of Nicotiana attenuata to attack by insects from multiple feeding guilds. Plant Cell Environ. 27: 1362-1373.
- Hendrix, J.W. 1970. Sterols in growth and reproduction of fungi. Annu. Rev. Phytopathol. 8 : 111-130.
- Henzler, T. et E. Steudle. 2000. Transport and metabolic degradation of hydrogen peroxide in Chara corallina: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. J. Exp. Bot. 51 : 2053-2066.
- Hipskind, J.D. et N.L. Paiva. 2000. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol. Plant-Microbe Interact. 13 : 551-562.
- Hu, X., D.L. Bidney, N. Yalpani, J.P. Duvick, O. Crasta, O. Folkerts et G. Lu. 2003. Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol. 133 : 170-181.
- Ingham, J.L. 1973. Disease resistance in higher plants. The concept of pre-infectional and post-infectional resistance. Phytopathol. Z. 78 : 314-335.
- Iwasaki, T. et Y. Hioki. 1988. Enhancement of biocide. U.S. Pat. No. 4,762,547.
- Jeffree, C.E. 1996. Structure and ontogeny of plant cuticles. Pages 33-82 dans G. Kerstiens (éd.), Plant cuticles: an integrated functional approach. Bios Scientific Publishers, Oxford, G.-B.
- Jones, J.D.G. et J.L. Dangl. 2006. The plant immune system. Nature 444 : 323-329.
- José-Estanyol, M., F.X. Gomis-Rüth et P. Puigdomènech. 2004. The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol. Biochem. 42 : 355-365.
- Kauffmann, S., S. Dorey et B. Fritig. 1999. Les stratégies de défense des plantes. Pour la Science 262 : 30-37.
- Kauss, H., W. Jeblick et A. Domard. 1989. The degrees of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Catharanthus roseus. Planta 178 : 385-392.
- Kendra, D.F. et L.A. Hadwiger. 1984. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp. Mycol. 8 : 276-281.
- Kessler, A. et I.T. Balwin. 2002. Plant responses to insect herbivory: the emerging molecular analysis. Annu. Rev. Plant Biol. 53 : 299-328.
- Kessmann, H., T. Staub, C. Hofmann, T. Maetzke, J. Herzog, E. Ward, S. Uknes et J. Ryals. 1994. Induction of systemic acquired disease resistance in plants by chemicals. Annu. Rev. Phytopathol. 32 : 439-459.
- Kieffer, F., J. Lherminier, F. Simon-Plas, M. Nicole, M. Paynot, T. Elmayan et J.P. Blein. 2000. The fungal elicitor cryptogein induces cell wall modifications on tobacco cell suspension. J. Exp. Bot. 51 : 1799-1811.
- Kim, S.T., K.S. Cho, S.G. Kim, S.Y. Kang et K.Y. Kang. 2003. A rice isoflavone reductase-like gene, OsIRL, is induced by rice blast fungal elicitor. Mol. Cell 16 : 224-231.
- King, A. et G. Young. 1999. Characteristics and occurrence of phenolic phytochemicals. J. Am. Diet. Assoc. 99 : 213-218.
- Klarzynski, O. et B. Fritig. 2001. Stimulation des défenses naturelles des plantes. C. R. Acad. Sci. Paris, Ser. III. 324 : 953-963.
- Kloepper, J.W. 1991. Plant growth-promoting rhizobacteria as biological control agents of soilborne diseases. Pages 142-156 dans J. Bay-Petersen (éd.), Biological control of plant diseases. FFTC Booh Series No 42. Food and Fertilizer Technology Center, Taiwan.
- Kloepper, J.W. 1993. Plant growth-promoting rhizobacteria as biological control agents. Pages 255-274 dans B. Melting (éd.), Soil microbial technologies. M. Dekker Inc., New York, É.-U.
- Kloepper, J.W. et M.N. Schroteh. 1981. Plant growth-promoting rhizobacteria and plant growth under gnoto-biotic conditions. Phytopathology 71 : 642-644.
- Knoester, M., J.F. Bol, L.C. van Loon et H.J.M. Linthorst. 1995. Virus-induced gene expression for enzymes of ethylene biosynthesis in hypersensitively reacting tobacco. Mol. Plant-Microbe Interact. 8 : 177-180.
- Kombrink, E. et I.E. Somssich. 1997. Pathogenesis-related proteins and plant defense. Pages 107-128 dans G.C. Carroll et P. Tudzynski (éds.), The Mycota V, Part A: Plant relationships. Springer-Verlag, Berlin.
- Komoriya, K., N. Shibano, T. Higano, N. Azuma, S. Yamaguchi et S.I. Aizawa. 1999. Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol. Microbiol. 34 : 767-779.
- Kùc, J. 1987. Plant immunization and its applicability for disease control. Pages 255-274 dans I. Chet (éd.), Innovative approaches to plant disease control. John Wiley & Sons, New York, É.-U.
- Kunoh, H., K. Matsuoka et I. Kobayashi. 1996. Ultrastructure of papillae induced in barley coleoptile cells by a pathogen, Erysiphe graminis, and a non-pathogen, E. pisi. Fitopatol. Brasil. 21 : 418–425.
- Lafitte C., J.P. Barthe, J.L. Montillet et A. Touzé. 1984. Glycoprotein inhibitors of Colletotrichum lindemuthianum endopolygalacturonase in near isogenic lines of Phaseolus vulgaris resistant and susceptible to anthracnose. Physiol. Plant Pathol. 25 : 39-53.
- Lafontaine, P.J. et N. Benhamou. 1996. Chitosan treatment: an emerging strategy for enhancing resistance of greenhouse tomato plants to infection by Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol Sci. Technol. 6 : 111-124.
- Lamb, C.J. et R.A. Dixon. 1997. The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48 : 251-275.
- Lawton, K.A., S.L. Potter, S. Uknes et J. Ryals. 1994. Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6 : 581-588.
- Lawton, K.A., K. Weymann, L. Friedrich, B. Vernooij, S. Uknes et J. Ryals. 1995. Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol. Plant-Microbe Interact. 8 : 863-870.
- Lawton, K.A., L. Friedrich, M. Hunt, K. Weymann, T. Delaney, H. Kessmann, T. Staub et J. Ryals. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10 : 71-82.
- Lebrun-Garcia, A., F. Ouaked, A. Chiltz et A. Pugin. 1998. Activation of MAPK homologues by elicitors in tobacco cells. Plant J. 15 : 773-781.
- Lecourieux-Ouaked, F., A. Pugin et A. Lebrun-Garcia. 2000. Phosphoproteins involved in the signal transduction of cryptogein, an elicitor of defense reactions in tobacco. Mol. Plant-Microbe Interact. 13 : 821-829.
- Lee, S.C. et C.A. West. 1981. Properties of Rhizopus stolonifer polygalacturanase, an elicitor of casbene synthetase activity in castor bean (Ricinus communis L.) seedlings. Plant Physiol. 67 : 640-645.
- Lemanceau, P. 1989. Role of competition for carbon and iron in mechanisms of soil suppressiveness to Fusarium wilts. Pages 385-396 dans E.C. Tjamos et C.H. Beckman (éds.), Vascular wilts diseases of plants: Basic studies and control. Springer-Verlag, Berlin.
- Lemanceau, P. et C. Alabouvette. 1993. Suppression of Fusarium wilts by fluorescent pseudomonads: mechanisms and applications. Biocontrol Sci. Technol. 3 : 219-234.
- Levine, A., R. Tenhaken, R. Dixon et C. Lamb. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79 : 583-593.
- Lherminier, J., N. Benhamou, J. Larrue, M.L. Milat, E. Boudon-Padieu, M. Nicole et J.P. Blein. 2003. Cytological characterization of elicitin-induced protection in tobacco plants infected by Phytophthora parasitica or phytoplasma. Phytopathology 93 : 1308-1319.
- Li, J., G. Brader et E.T. Palva. 2004. The WRKY70 transcription factor: a node of convergence for jasmonate- mediated and salicylate-mediated signals in plant defense. Plant Cell 16 : 319-331.
- Lin, W., X. Hu, W. Zhang, W.J. Rogers et W. Cai. 2005. Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. J. Plant Physiol. 162 : 937-944.
- Low, P.S. et J.R. Merida. 1996. The oxidative burst in plant defense: function and signal transduction. Physiol. Plant. 96 : 533-542.
- Lu, H. 2009. Dissection of salicylic acid-mediated defense signaling networks. Plant Signal. Behav. 4 : 713-717.
- Malamy, J. et D.F. Klessig. 1992. Salicylic acid and plant disease resistance. Plant J. 2 : 643-654.
- Maleck, K., A. Levine, T. Eulgem, A. Morgen, J. Schmid, K.A. Lawton, J.L. Dangl et R.A. Dietrich. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26 : 403-410.
- Mathieu, Y., A. Kurkdjian, H. Xia, J. Guern, A. Koller, M.D. Spiro, M. O’Neill, P. Albersheim et A. Darvill. 1991. Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant J. 1 : 333-343.
- Mathieu, Y., D. Lapous, S. Thomine, C. Laurière et J. Guern. 1996. Cytoplasmic acidification as an early phosphorylation-dependent response of tobacco cells to elicitors. Planta 199 : 416-424.
- Maxwell, D.P., Y. Wang et L. McIntosh. 1999. The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc. Natl. Acad. Sci. USA 96 : 8271-8276.
- McNally, D.J., K.V. Wurms, C. Labbé et R.R. Bélanger. 2003. Synthesis of C-glycosyl flavonoid phytoalexins as a site-specific response to fungal penetration in cucumber. Physiol. Mol. Plant Pathol. 63 : 293-303.
- Meindl, T., T. Boller et G. Felix. 2000. The bacterial elicitor flagellin activates its receptor in tomato cells according to the address-message concept. Plant Cell 12 : 1783-1794.
- Memelink, J., R. Verpoorte et J.W. Kijne. 2001. Organization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci. 6 : 212-219.
- Mikes, V., M.L. Milat, M. Ponchet, P. Ricci et J.P. Blein. 1997. The fungal elicitor cryptogein is a sterol carrier protein. FEBS Lett. 416 : 190-192.
- Mikkelsen, M.D., B.L. Peterson, E. Glawisching, A.B. Jensen, E. Andreasson et B.A. Halkier. 2003. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signalling pathways. Plant Physiol. 131 : 298-308.
- Milat, M.L., P. Ricci, P. Bonnet et J.P. Blein. 1991. Capsidiol and ethylene production by tobacco cells in response to cryptogein, an elicitor from Phytophthora cryptogea. Phytochemistry 30 : 2171-2173.
- Mirjalili, N. et J.C. Linden. 1996. Methyl jasmonate induced production of taxol in suspension cultures of Taxus cuspidate: ethylene interaction and induction models. Biotechnol. Prog. 12 : 110-118.
- Mitchell, H.J., J.L. Hall et M.S. Barber. 1994. Elicitor-induced cinnamyl alcohol dehydrogenase activity in lignifying wheat (Triticum aestivum L.) leaves. Plant Physiol. 104 : 551-556.
- Mittler, R., S. Vanderauwera, N. Suzuki, G. Miller, V.B. Tognetti, K. Vandepoele, M. Gollery, V. Shulaev et F. Van Breusegem. 2011. ROS signaling: the new wave? Trends Plant Sci. 16 : 300-309.
- Molders, W., A. Buchala et J.P. Metraux. 1996. Transport of salicylic acid in tobacco necrosis virus-infected cucumber plants. Plant Physiol. 112 : 787-792.
- Mosblech, A., I. Feussner et I. Heilmann. 2009. Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 47: 511-517.
- Mourrain, P., C. Béclin, T. Elmayan, F. Feuerbach, C. Gordon, J.B. Morel, D. Jouette, A.M. Lacombe, S. Nikic, N. Picault, K. Rémoué, M. Sanial, T.A. Vo et H. Vaucheret. 2000.Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101 : 533-542.
- Müller, K.O. et H. Börger. 1940. Experimentelle untersuchungen über die Phytophthora resistenz der kartoffel. Arb. Biol. Reichsanst. Land-Forstwirtsch, Berlin-Dahlem. 23 : 189-231.
- Nicholson, R.L. et R. Hammerschmidt. 1992. Phenolic compounds and their role in disease resistance. Annu. Rev. Phytopathol. 30 : 369-389.
- Niki, T., I. Mitsuhara, S. Seo, N. Ohtsubo et Y. Ohashi. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39 : 500-507.
- Nürnberger, T. et D. Scheel. 2001. Signal transmission in the plant immune response. Trends Plant Sci. 6 : 372-379.
- Oksanen, E., E. Häikiö, J. Sober et D.F. Karnosky. 2004. Ozone-induced H2O2 accumulation in field-grown aspen and birch is linked to foliar ultrastructure and peroxisomal activity. New Phytol. 161 : 791-799.
- Orr, G.L., J.A. Strickland et T.A. Walsh. 1994. Inhibition of Diabrotica larval growth by a multicystatin from potato tubers. J. Insect Physiol. 40 : 893-900.
- Panabières, F., M. Ponchet, V. Allasia, L. Cardin et P. Ricci. 1997. Characterization of border species among Pythiaceae: several Pythium isolates produce elicitins, typical proteins from Phytophthora spp. Mycol. Res. 101 : 1459-1468.
- Paulitz, T.C., T. Zhou et L. Rankin. 1992. Selection of rhizospere bacteria for biological control of Pythium aphanidermatum on hydroponically grown cucumber. Biol. Control. 2 : 226-237.
- Penninckx, I.A., B.P. Thomma, A. Buchala, J.P. Métraux et W.F. Broekaert. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10 : 2103-2113.
- Ponchet, M., F. Panabières, M.L. Milat, V. Mikes, J.L. Montillet, L. Suty, C. Triantaphylides, Y. Tirilly et J.P. Blein. 1999. Are elicitins cryptograms in plant-Oomycete communications? Cell. Mol. Life Sci. 56 : 1020-1047.
- Pugin, A., J.M. Frachisse, E. Tavernier, R. Bligny, E. Gout, R. Douce et J. Guern. 1997. Early events induced by the elicitor cryptogein in tobacco cells: involvement of a plasma membrane NADPH oxidase and activation of glycolysis and the pentose phosphate pathway. Plant Cell 9 : 2077-2091.
- Pulliam, D.A., D.L. Williams, R.M. Broadway et C.N. Stewart. 2001. Isolation and characterization of a serine protenase inhibitor cDNA from cabbage and its antibiosis in transgenic tobacco plants. Plant Cell Biotechnol. Mol. Biol. 2 : 19-32.
- Rankin, L. et T.C. Paulitz. 1994. Evaluation of rhizosphere bacteria for biological control of Pythium root rot of greenhouse cucumbers in hydroponic culture. Plant Dis. 78 : 447-451.
- Rasmussen, J.B., R. Hammerschmidt et M.N. Zook. 1991. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae. Plant Physiol. 97 : 1342-1347.
- Reglinski, T., G.D. Lyon et A.C. Newton. 1994. Assessment of the ability of yeast-derived elicitors to control barley powdery mildew in the field. J. Plant Dis. Prot. 101 : 1-10.
- Rhoads, D.M. et C.C. Subbaiah. 2007. Mitochondria retrograde regulation in plants. Mitochondrion 7 : 177-194.
- Ricci, P., P. Bonnet, J.C. Huet, M. Sallantin, F. Beauvais-Cante, M. Bruneteau, V. Billard, G. Michel et J.C. Pernollet. 1989. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur. J. Biochem. 183 : 555-563.
- Robert-Seilaniantz, A., M. Grant et J.D.G. Jones. 2011. Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism. Annu. Rev. Phytopathol. 49 : 317-343.
- Romeis, T., P. Piedras, S. Zhang, D.F. Klessig, H. Hirt et J.D. Jones. 1999. Rapid Avr9- and Cf-9-dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound, and salicylate responses. Plant Cell 11 : 273-287.
- Roos, W., B. Dordschbal, J. Steighardt, M. Hieke, D. Weiss et G. Saalbach. 1999. A redox-dependent G-protein-coupled phospholipase A of the plasma membrane is involved in the elicitation of alkaloid biosynthesis in Eschscholtzia californica. Biochem. Biophys. Acta 1448 : 390-402.
- Ross, A.F. 1961a. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14 : 329-339.
- Ross, A.F. 1961b. Systemic acquired resistance induced by localized virus infections in plants. Virology 14 : 340-358.
- Rouxel, T. 1989. Les phytoalexines et leur intervention dans la résistance hypersensible aux champignons phytopathogènes. Agronomie 9 : 529-545.
- Rustérucci, C., V. Stallaert, M.L. Milat, A. Pugin, P. Ricci et J.P. Blein. 1996. Relationship between active oxygen species, lipid peroxidation, necrosis, and phytoalexin production induced by elicitins in Nicotiana. Plant Physiol. 111 : 885-891.
- Ryan, C.A. 1990. Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annu. Rev. Phytopathol. 28 : 425-449.
- Sakano, K. 2001. Metabolic regulation of pH in plant cells: role of cytoplasmic pH in defense reaction and secondary metabolism. Int. Rev. Cytol. 206 : 1-44.
- Samatey, F.A., K. Imada, S. Nagashima, F. Vonderviszt, T. Kumasaka, M. Yamamoto et K. Namba. 2001. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 410 : 331-337.
- Schaller, F. 2001. Enzymes of the biosynthesis of octadecanoid-derived signalling molecules. J. Exp. Bot. 52 : 11-23.
- Scheel, D. 1998. Resistance response physiology and signal transduction. Curr. Opin. Plant Biol. 1 : 305-310.
- Scheffer, R.J. 1983. Biological control of dutch elm disease by Pseudomonas species. Ann. Appl. Biol. 103 : 21-30.
- Schimoler-O’Rourke, R., M. Richardson et C.P. Selitrennikoff. 2001. Zeamatin inhibits trypsin and α-amylase activities. Appl. Environ. Microbiol. 67 : 2365-2366.
- Schmelz, E.A., J. Engelberth, H.T. Alborn, P. O’Donnell, M. Sammons, H. Toshima et J.H Tumlinson. 2003. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc. Natl. Acad. Sci. USA 100 : 10552-10557.
- Selitrennikoff, C.P. 2001. Antifungal proteins. Appl. Environ. Microbiol. 67 : 2883-2894.
- Sels, J., J. Mathys, B.M.A. De Coninck, B.P.A. Cammue, et M.F.C. De Bolle. 2008. Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol. Biochem. 46 : 941-950.
- Sendon, P.M., H.S. Seo et J.T. Song. 2011. Salicylic acid signaling: biosynthesis, metabolism, and crosstalk with jasmonic acid. J. Korean Soc. Appl. Biol. Chem. 54 : 501-506.
- Shi, J., W.C. Mueller et C.H. Beckman. 1992. Vessel occlusion and secretory activities of vessel contact cells in resistant and susceptible cotton plants infected with Fusarium oxysporum f. sp. vasinfectum. Physiol. Mol. Plant Pathol. 40 : 133-147.
- Simon-Plas, F., C. Rustérucci, M.L. Milat, C. Humbert, J.L. Montillet et J.P. Blein. 1997. Active oxygen species production in tobacco cells elicited by cryptogein. Plant Cell Environ. 20 : 1573-1579.
- Skipp, R.A. et J.A. Bailey. 1976. The effect of phaseollin on the growth of Colletotrichum lindemuthianum in bio-assays designed to measure fungitoxicity. Physiol. Plant Pathol. 9 : 253-257.
- Stekoll, M. et C.A. West. 1978. Purification and properties of an elicitor of castor bean phytoalexin from culture filtrates of the fungus Rhizopus stolonifer. Plant Physiol. 61 : 38-45.
- Sticher, L., B. Mauch-Mani et J.P. Métraux. 1997. Systemic acquired resistance. Annu. Rev. Phytopathol. 35 : 235-270.
- Stulemeijer, I.J.E. et M.H.A.J. Joosten. 2008. Post-translational modification of host proteins in pathogen-triggered defence signalling in plants. Mol. Plant Pathol. 9 : 545-560.
- Suarez-Rodriguez, M.C., M. Petersen et J. Mundy. 2010. Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61: 621-649.
- Tamogami, S., R. Rakwa et O. Kodama. 1997. Phytoalexin production elicited by exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of cytokinins and ascorbic acid. FEBS Lett. 412 : 61-64.
- Tavernier, E., D. Wendehenne, J.P. Blein et A. Pugin. 1995. Involvement of free calcium in action of cryptogein, a proteinaceous elicitor of hypersensitive reaction in tobacco cells. Plant Physiol. 109 : 1025-1031.
- Tena, G., M. Boudsocq et J. Sheen. 2011. Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 14 : 519-529.
- Theis, T., et U. Stahl. 2004. Antifungal proteins: targets, mechanisms and prospective applications. Cell. Mol. Life Sci. 61 : 437-455.
- Thomma, B.P.H.J., K. Eggermont, I.A.M.A. Penninckx, B. Mauch-Mani, R. Vogelsang, B.P.A. Cammue et W.F. Broekaert. 1998. Separate jasmonate-dependent and salicylate-dependent defense response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95 : 15107-15111.
- Thomzik, J.E., K. Stenzel, R. Stöcker, P.H. Schreier, R. Hain et D.J. Stahl. 1997. Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol. Mol. Plant Pathol. 51 : 265-278.
- Tichtinsky, G., V. Vanoosthuyse, J.M. Cock et T. Gaude. 2003. Making inroads into plant receptor kinase signalling pathways. Trends Plant Sci. 8 : 231-237.
- Tyler, B.M. 2002. Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu. Rev. Phytopathol. 40 : 137-167.
- Umemoto, N., M. Kakitani, A. Iwamatsu, M. Yoshikawa, N. Yamaoka et I. Ishida. 1997. The structure and function of a soybean beta-glucan-elicitor-binding protein. Proc. Natl. Acad. Sci. USA 94 : 1029-1034.
- Van Breusegem, F. et J.F. Dat. 2006. Reactive oxygen species in plant cell death. Plant Physiol. 141 : 384-390.
- VanEtten, H., E. Temporini et C. Wasmann. 2001. Phytoalexin (and phytoanticipin) tolerance as a virulence trait: why is it not required by all pathogens? Physiol. Mol. Plant Pathol. 59 : 83-93.
- Van Loon, L.C. 1999. Occurrence and properties of plant pathogenesis-related proteins. Pages 1-19 dans S.K. Datta et S. Muthukrishnan (éd.), Pathogenesis-related proteins in plants. CRC Press, Boca Raton, É.-U.
- Van Loon, L.C. et A. Van Kammen. 1970. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. samsun and samsun NN: II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 40 : 199-211.
- Van Peer, R., G.J. Niemann et B. Schippers. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81 : 728-734.
- Vauthrin, S., V. Mikes, M.L. Milat, M. Ponchet, B. Maume, H. Osman et J.P. Blein. 1999. Elicitins trap and transfer sterols from micelles, liposomes and plant plasma membranes. Biochem. Biophys. Acta 1419 : 335-342.
- Vernooij, B., L. Friedrich, A. Morse, R. Reist, R. Kolditz-Jawhar, E. Ward, S. Uknes, H. Kessmann et J. Ryals. 1994. Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6 : 959-965.
- Viard, M.P., F. Martin, A. Pugin, P. Ricci et J.P. Blein. 1994. Protein phosphorylation is induced in tobacco cells by the elicitor cryptogein. Plant Physiol. 104 : 1245-1249.
- Vlot, A.C., D.A. Dempsey et D.F. Klessig. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47 : 177-206.
- Voinnet, O. 2001. RNA silencing as a plant immune system against viruses. Trends Genet. 17 : 449-459.
- Voinnet, O. et D.C. Baulcombe. 1997. Systemic signalling in gene silencing. Nature 389 : 553.
- Walker-Simmons, M. et C.A. Ryan. 1984. Proteinase inhibitor synthesis in tomato leaves. Induction by chitosan oligomers and chemically modified chitosan and chitin. Plant Pathol. 76 : 787-790.
- Wasternack, C. et E. Kombrink. 2010. Jasmonates: structural requirements for lipid-derived signals active in plant stress responses and development. ACS Chem. Biol. 5 : 63-77.
- Waterhouse, P.M., M.B. Wang et T. Lough. 2001. Gene silencing as an adaptative defence against viruses. Nature 411 : 834-842.
- Wei, G., J.W. Kloepper et S. Tuzun. 1994. Induced systemic resistance to cucumber diseases and increase plant growth by plant growth-promoting rhizobacteria under field conditions. Pages 70-71 dans M.H. Ryder, P.M. Stephens et G.D. Bowen (éds.), Improving plant productivity with rhizosphere bacteria. CSIRO, Glen Osmond, Australie.
- Weller, D.M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26 : 379-407.
- Wendehenne, D., M.N. Binet, J.P. Blein, P. Ricci et A. Pugin. 1995. Evidence for specific, high affinity binding sites for a proteinaceous elicitor in tobacco plasma membrane. FEBS Lett. 374 : 203-207.
- Wendehenne, D., O. Lamotte, J.M. Frachisse, H. Barbier-Brygoo et A. Pugin. 2002. Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco. Plant Cell 14 : 1937-1951.
- White, P.J. et M.R. Broadley. 2003. Calcium in plants. Ann. Bot. 92 : 487-511.
- Wu, Q. et H.D. VanEtten. 2004. Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen. Mol. Plant-Microbe Interact. 17 : 798-804.
- Xing, T., T. Ouellet et B.L. Miki. 2002. Towards genomic and proteomic studies of protein phosphorylation in plant-pathogen interactions. Trends Plant Sci. 7 : 224-230.
- Xu, Y., P.F.L. Chang, D. Liu, M.L. Narasimhan, K.G. Raghothama, P.M. Hasegawa et R.A. Bressan. 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6 : 1077-1085.
- Yalpani, N., V. Shulaev et I. Raskin. 1993. Endogenous salicylic acid levels correlate with accumulation of pathogenesis-related proteins and virus resistance in tobacco. Phytopathology 83 : 702-708.
- Yamada, T., H. Hashimota, T. Shiraishi et H. Oker. 1989. Suppression of pisatin, phenylalanine ammonia-lyase mRNA and chalcone synthase mRNA accumulation by a putative pathogenicity factor from the fungus Mycosphaerella pinodes. Mol. Plant-Microbe Interact. 2 : 256-261.
- Yoshikawa, M., N. Yamaoka et Y. Takeuchi. 1993. Elicitors: their significance and primary modes of action in the induction of plant defense reactions. Plant Cell Physiol. 34 : 1163-1173.
- Zdor, R.E. et A.J. Anderson. 1992. Influence of root colonizing bacteria on the defense response of bean. Plant Soil 140 : 99-107.
- Zimmermann, S., T. Nurnberger, J.M. Frachisse, W. Wirtz, J. Guern, R. Hedrich et D. Scheel. 1997. Receptor-mediated activation of a plant Ca2+-permeable ion channel involved in pathogen defense. Proc. Natl. Acad. Sci. USA 94 : 2751-2755.