Abstracts
Résumé
L’étude des racines a été entreprise dans le laboratoire du Centre de recherche et de développement sur les sols et les grandes cultures pour tenter d’élucider l’effet inattendu d’un virus qui, exploité dans le contexte de la sélection végétale, aidait à augmenter le potentiel de biomasse de l’espèce. La complexité de la vie des racines amène bien des embûches dans de telles études. Le monde des interactions au niveau des racines est si complexe que la méthode cartésienne n’offre pas les outils adéquats pour comprendre le système. Malgré tout, on peut développer des méthodes utiles et efficaces pour comprendre et gérer cette complexité. Après avoir approfondi les acquis des méthodes cartésiennes, il faut aller vers des approches synthétiques offrant une possibilité de continuité des progrès académiques et pratiques. Les racines les mieux adaptées et les plus plastiques par rapport à leur écosystème possèdent de nombreuses propriétés probablement interreliées. Un progrès global vers la santé des racines est donc un but envisageable, et dont le succès serait important au niveau environnemental. La génétique et la régie peuvent y contribuer. Pour progresser dans ce domaine, il faut donc oser sortir des voies conventionnelles. Ce n’est pas seulement la difficulté d’une question complexe qui est en cause, mais également le fait que notre éducation nous a enseigné à éviter de côtoyer la complexité. L’approche réductrice ne permet de comprendre ni la santé des racines, ni celle de la plante, ni le lien entre la plante, ses ennemis, la rhizosphère, et l’environnement. C’est donc à juste titre que des philosophes nous mettent en garde contre les impacts du morcellement des connaissances. Ce texte s’inscrit dans le désir d’aborder le monde des racines dans sa complexité et d’éviter les pièges associés à la logique cartésienne à l’état pur.
Mots clés:
- Descartes,
- Pascal,
- photosynthétats,
- résistance,
- systémique,
- tolérance
Abstract
[Root health: a world of complexity]
A root study was undertaken at the SCRDC laboratory in an attempt to elucidate the unexpected impact of a virus which, used in the context of plant selection, helped improve the biomass potential of the species. The complexity of root systems can produce many pitfalls in such studies. Interactions at the root level are so complex that Cartesian methods do not offer suitable tools for understanding the system. However, it is possible to develop useful and efficient methods for understanding and managing this complexity. After having analyzed the knowledge acquired using Cartesian methods, it is necessary to look into synthetic methods offering the possibility of furthering academic and practical progress. The best adapted and most plastic roots in relation to their ecosystem have numerous characteristics that are probably interrelated. Hence, a global progress towards root health is a realistic objective whose success would be important at the environmental level. Genetics and management also have a role to play. To make progress in this field, it is therefore necessary to dare go off the beaten track. It is not only the difficulty of a complex issue that is in question but also the fact that our education has taught us to avoid meddling with complexity. The simplistic approach does not allow a good understanding of root heath, or even plant health, or of the relationships between the plant and its enemies, the rhizosphere and the environment. Philosophers are therefore justified in warning us against the impacts of knowledge fragmentation. The following text comes within the scope of a desire to tackle the world of roots in all of its complexity in order to avoid the traps inherent to pure Cartesian logic.
Keywords:
- Descartes,
- Pascal,
- photosynthates,
- resistance,
- systemic,
- tolerance
Appendices
Références
- Abdel Nasser, L.E. et A.E. Abdel Aal. 2002. Effect of boron deficiency on some physiological and biochemical aspects during the developmental stages of wheat (Triticum aestivum L.) plant. OnLine J. Biol. Sci. 2 : 470-476.
- Barber, S.A. 1974. Influence of the plant root on ion movement in the soil. Pages 525-564 in E.W. Carson (éd.), The plant root and its environment. U. Press of Virginia. Charlottesville, Va USA.
- Brown, J.K.M. 2002. Yield penalties of disease resistance in crops. Curr. Opin. Plant Biol. 5 : 339–344.
- Browning, J.A. 1998. One phytopathologist's growth through IPM to holistic plant health. Annu. Rev. Phytopathol. 36 : 1-24.
- Brunelle, A. 2005. Production écologique et rentable de céréales à paille : aspects agronomiques. Pages 55-60 in Colloque céréales : des cultures aux premiers rangs. Cahier de conférences, CRAAQ, Ste-Foy (Québec).
- Comeau, A. et S. Haber. 2002. Breeding for BYDV tolerance in wheat as a basis for a multiple stress tolerance strategy. Pages 82-92 in M. Henry et A. McNab (éds.), Barley yellow dwarf disease, recent advances and future strategies. CIMMYT, Mexico.
- Comeau, A. et S. Haber. 2004. Resistance and tolerance to BYDVs/CYDVs in cereals. Pages 204-218 in H. Lapierre et A. Signoret (éds.), Viruses and virus diseases of Poaceae (Gramineae). INRA, Paris ISBN 2-7380-10881.
- Comeau A., V. Caetano, C.A. St-Pierre et S. Haber. 2001. Accelerated breeding: dream or reality? Pages 671-679 in Z. Bedo et L. Lang (éds.), Wheat in a global environment. Kluwer Acad. Publ., The Netherlands.
- Cruz, P.J., F.I.F. de Carvalho, V.R. Caetano, S.A. Silva, A.J. Kurek et R.L. Barbieri. 2001. Traits associated with lodging resistance in bread wheat. Cienc. Rural 31 :563-568.
- Descalzo, R.C., Z.K. Punja, C.A. Lévesque et J.E. Rahe. 1996. Identification and role of Pythium species as glyphosate synergists on beans (Phaseolus vulgaris) grown in different soils. Mycol. Res. 100 : 971-978.
- Dommergues, Y. et F. Mangenot. 1970. Écologie microbienne du sol. Masson et Cie, Paris. 796 pp.
- Geiger, D. et J. Servaites. 1991. Carbon allocation and response to stress. Pages 103-127 in H. Mooney, W. Winner, E. Pell et E. Chu (éds.), Response of plant to multiple stresses. Academic Press. San Diego.
- Graham, R.D. et M.J. Webb. 1991. Micronutrients and resistance and tolerance to disease. Pages 329-370 in J.J. Mortwedt, F.R. Cox, L.M. Shuman et R.M. Welch (éds.), Micronutrients in agriculture. Second Edition. Madison, Wisc., USA.: Soil Science Society of America.
- Hays, S.M. 1993. Secrets of soil nutrient uptake. Agric. Res. 41 : 18-19.
- Higginbotham, R.W., T.C. Paulitz et K.K. Kidwell. 2004. Evaluation of adapted wheat cultivars for tolerance to pythium root rot. Plant Dis. 88 : 1027-1032.
- Hill, R.D. 1998. What are hemoglobins doing in plants? Can. J. Bot. 76 : 707-712.
- Huber, D.M. et T.S. McCay-Buis. 1993. A multiple component analysis of the take-all disease of cereals. Plant Dis. 77 : 437-447.
- Kozlowski, T.T. 1984. Flooding and plant growth. Academic Press, Orlando.
- Lambers, H. 1987. Growth, respiration, exudation and symbiotic associations: the fate of carbon translocated to the roots. Pages 125-145 in P.J. Gregory, V.A. Lake et D.A. Rose (éds.) Root development and function. Soc. Exp. Biol. Seminar Series 30. Cambridge U. Press, Cambridge, UK.
- Lemerle, D., B. Verbeek, R.D. Cousens et N.E. Coombes. 1996. The potential for selecting wheat varieties strongly competitive against weeds. Weed Res. 36 : 505-513.
- Lévesque, A. et J.E. Rahe. 1992. Herbicide interactions with fungal root pathogens, with special reference to glyphosate. Annu. Rev. Phytopathol. 30 : 579-602.
- Lewontin, R.C. 1991. Biology as ideology: the doctrine of DNA. HarperPerennial, New York. 112 pp.
- Lewontin, R.C. 2000. The triple helix: gene, organism, and environment. Harvard University Press, Cambridge, MA. 136 pp.
- Lewontin, R. 2001. It ain't necessarily so: the dream of the human genome and other illusions. 2nd Ed. New York Review of Books. 330 pp.
- Lewontin, R.C., S. Rose et L.J. Kamin. 1984. Not in our genes: biology, ideology and human nature. Penguin, Harmondsworth, UK.
- Longnecker, N.E., N.E. Marcar et R.D. Graham. 1991. Increased manganese content of barley seeds can increase grain yield in manganese-deficient conditions. Austr. J. Agric. Res. 42 : 1065-1074.
- MacKey, J. 1973. The wheat root. Pages 827-842 in Proc. 4th Internat. Wheat Genet. Symp.
- MacKey, J. 1984. Assimilation and yield structure - a plant breeder's conclusion. Sveriges Utsädesförenongs Tidskrift. 94 : 135-144.
- Marchner, H. 1995. Mineral nutrition of higher plants. 2nd Ed. Academic Press, New York. 889 pp.
- Miralles, D.J., G.A. Slafer et V.R. Lynch. 1997. Rooting patterns in near-isogenic lines of spring wheat for dwarfism. Plant Soil 197 : 79-86.
- Morin, E. 1986. La méthode. Vol. 3. La connaissance de la connaissance, Seuil, Paris. 255 pp.
- Morin, E. 1999. La tête bien faite. Seuil, Paris. 153 pp.
- Nester, M.R. 1996. An applied statistician's creed. Applied Statistics 45 : 401-410.
- Nicol, J., S.A. Bagci, H. Hekimhan, B. Tunali, N. Bolat, H.J. Braun et R. Trethowan. 2004. Strategy for the identification and breeding of resistance to dryland root rot complex for International spring and winter wheat breeding programs. Poster paper in “New directions for a diverse planet”. Proc. 4th Internat. Crop Sci. Congr., Brisbane, Australia. www.cropscience.org.au
- Nodichao, L. 1997. Biodiversité racinaire et résistance à la sécheresse. Mémoire de maîtrise. U. Laval, Québec. 168 pp.
- Romheld, V. et H. Marschner. 1990. Genotypical differences among graminaceous species in release of phytosiderophores and uptake of iron phytosiderophores. Pages 77-83 in N. El Bassam, M. Dambroth. et B.C. Loughman (éds.), Genetic aspects of plant mineral nutrition. Kluwer Academic Publishers, Dordrecht, the Netherlands.
- Wallace, D.H. et W. Yan. 1998. Plant breeding and whole-system crop physiology – improving crop maturity, adaptation, and yield. CAB International, NY, USA. 390 pp.
- Webb, A.J. et Dell, B. 1990. Effect of manganese supply on development of wheat (Triticum aestivum) roots. Pages 235-239 in M.L. Van Beusichem (éd.), Plant nutrition – physiology and applications. Kluwer Academic Publishers, Dordrecht, the Netherlands.
- Yan, W. et Tinker, NA. 2005. An integrated biplot analysis system for displaying, interpreting and exploring genotype x environment interaction. Crop Sci. 45 : 1004-1016.