Abstracts
Abstract
Plants exhibit remarkable plasticity in their ability to differentiate between herbivorous insect species and subtly adjust their defense responses to target distinct pests. One key mechanism used by plants to recognize herbivorous caterpillars is elicitors present in their oral secretions; however, these elicitors not only cause the induction of plant defenses but recent evidence suggests that they may also suppress plant responses. The absence of “expected changes” in induced defense responses of insect-infested plants has been attributed to hydrogen peroxide produced by caterpillar salivary glucose oxidase (GOX). Activity of this enzyme is variable among caterpillar species; it was detected in two generalist caterpillars, the beet armyworm (Spodoptera exigua) and the bertha armyworm (Mamestra configurata), but not in other generalist or specialist caterpillar species tested. In the beet armyworm, GOX activity fluctuated over larval development with high activity associated with the salivary glands of fourth instars. Larval salivary GOX activity of the beet armyworm and the bertha armyworm was observed to be significantly higher in caterpillars reared on artificial diet as compared with those reared on Medicago truncatula plants. This implies that a factor in the diet is involved in the regulation of caterpillar salivary enzyme activity. Therefore, plant diet may be regulating caterpillar oral elicitors that are involved in the regulation of plant defense responses: our goal is to understand these two processes.
Résumé
Les plantes font montre d’une remarquable plasticité pour distinguer différentes espèces d’insectes herbivores et subtilement ajuster leurs réponses de défense en fonction des différents ravageurs. Les éliciteurs présents dans les sécrétions orales constituent un mécanisme clé utilisé par les plantes pour reconnaître les chenilles herbivores; cependant, ces éliciteurs, non seulement provoquent-ils l’induction des défenses de la plante, mais des preuves récentes suggèrent qu’ils pourraient aussi inhiber les réponses de la plante. L’absence de « changements attendus » en guise de réponses de défense chez des plantes infestées d’insectes a été attribuée au peroxyde d’hydrogène produit par la glucose oxydase (GOX) salivaire de la chenille. L’activité de cette enzyme varie selon l’espèce de chenille; elle fut détectée chez deux espèces de chenilles généralistes, la légionnaire de la betterave (Spodoptera exigua) et la légionnaire bertha (Mamestra configurata), mais pas chez les autres espèces de chenilles généralistes ou spécialistes testées. Chez la légionnaire de la betterave, l’activité de la GOX fluctua pendant le développement larvaire avec une forte activité associée aux glandes salivaires du 4e stade larvaire. On observa que l’activité salivaire de la GOX chez les larves de la légionnaire de la betterave et chez la légionnaire bertha était significativement plus élevée chez les chenilles élevées sur un milieu nutritif artificiel que chez celles élevées sur des Medicago truncatula. Ceci suppose qu’un facteur du régime alimentaire est impliqué dans la régulation de l’activité des enzymes salivaires des chenilles. Par conséquent, le régime alimentaire végétal pourrait réguler les éliciteurs oraux de la chenille qui seraient impliqués dans la régulation des réponses de défense de la plante : notre but est de comprendre ces deux processus.
Appendices
References
- Alborn, H.T., Turlings, T.C.J., Jones, T.H., Stenhagen, G., Loughrin J.H., and Tumlinson, J.H. 1997. An elicitor of plant volatiles from beet armyworm oral secretions. Science 276 : 945-949.
- Alborn, H.T., Jones, T.H., Stenhagen, G.S., and Tumlinson, J.H. 2000. Identification and synthesis of volicitin and related components from beet armyworm oral secretions. J. Chem. Ecol. 26 : 203-220.
- Bick J.A., and Lange B.M. 2003. Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis: unidirectional transport of intermediates across the chloroplast envelope membrane. Arch. Biochem. Biophysics 415 : 146-154.
- Bown, A.W., Hall, D.E., and MacGregor, K.B. 2002. Insect footsteps on leaves stimulate the accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll fluorescence and superoxide production. Plant Physiol. 129 : 1430-1434.
- De Gara, L., de Pinto, M.C., and Tommasi, F. 2003. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiol. Biochem. 41 : 863-870.
- Degenhardt, J., Gershenzon, J., Baldwin, I.T., and Kessler, A. 2003. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr. Opin. Biotechnol. 14 : 169-176.
- DeMoraes, C.M., Lewis, W.J., Paré, P.W., Alborn, H.T., and Tumlinson, J.H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393 : 570-573.
- Dicke, M., van Poecke, R.M.P., and de Boer, J.G. 2003. Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl. Ecol. 4 : 27-42.
- Eichenseer, H., Mathews, M.C., Bi, J.L., Murphy, J.B., and Felton, G.W. 1999. Salivary glucose oxidase: multifultional roles for Helicoverpa zea. Arch. Insect Biochem. Physiol. 42 : 99-109.
- Eichenreich, W., Rohdich, F., and Bacher, A. 2001. Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci. 6 : 78-84.
- Elzinga, R.J. 1987. Fundamentals of Entomology, 3rd Ed., Prentice Hall, New Jersey.
- Felton, G.W., and Korth, K.L. 2000. Trade-offs between pathogen and herbivore resistance. Curr. Opin. Plant Biol. 3 : 309-314.
- Hickey, D.A., Benkel, K.I., Fong, Y., and Benkel, B.F. 1994. A Drosophila gene promoter is subject to glucose repression in yeast cells. Proc. Natl. Acad. Sci. USA 91 : 11109-11112.
- Jux, A., Gleixner, G., and Boland, W. 2001. Classification of terpenoids according to the methylerythritolphosphate or the mevalonate pathway with natural C12/C13 isotope ratios: Dynamic allocation of resources in induced plants. Angew. Chem. Int. Ed. Engl. 40 : 2091-2093.
- Kessler, A., and Baldwin, I.T. 2001. Defensive function of herbivore-induced plant volatiles emissions in nature. Science 291 : 2141-2144.
- Kessler, A., and Baldwin, I.T. 2002. Plant responses to insect herbivory: The emerging molecular analysis. Annu. Rev. Plant Biol. 53 : 299-328.
- Lichtenthaler, H.K. 1999. The 1-deoxy-D-xylulose-5-phosphate pathways of isoprenoid biosynthesis in plants. Annu. Rev. Plant Physiol. 50 : 47-65.
- Madhusudhan, V.V., Taylor, G.S., and Miles, P.W. 1994. The detection of salivary enzymes of phytophagous Hemiptera – a compilation of methods. Ann. Appl. Biol. 124 : 405-412.
- Manchenko, G.P. 2003. Handbook of detection of enzymes on electrophoretic gels. CRC Press, Boca Raton, Florida, U.S.A.
- Mathews, M.C., Summers, C.B., and Felton, G.W. 1997. Ascorbate peroxidase: A novel antioxidant enzyme in insects. Arch. Insect Biochem. Physiol. 34 : 57-68.
- McCloud, E.S., and Baldwin, I.T. 1997. Herbivory and caterpillar regurgitants amplify the wound-induced increases in jasmonic acid but not nicotine in Nicotiana sylvestris. Planta 203 : 430-435.
- Musser, R.O., Hum-Musser, S.M., Eichenseer, H., Peiffer, M., Ervin, G., Murphy, J.B., and Felton, G.W. 2002. Caterpillar saliva beats plant defences. Nature 416 : 599-600.
- Ni, X.Z., Quisenberry, S.S., Pornkulwat, S., Figarola, J.L., Skoda, S.R., and Foster, J.E. 2000. Hydrolase and oxido-reductase activities in Diuraphis noxia and Rhopalosiphum padi (Hemiptera: Aphididae). Ann. Entomol. Soc. Am. 93 : 595-601.
- Piel, J., Donath, J., Bandemer, K., and Boland, W. 1998. Mevalonate-independent biosynthesis of terpenoid volatiles in plants: Induced and constitutive emission of volatiles. Angew. Chem. Int. Ed. Engl. 37 : 2478-2481.
- Reymond, P., Weber, H., Damond, M., and Farmer, E.E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12 : 707-719.
- Rohmer, M. 1999. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Res. 16 : 565-574.
- Stotz, H.U., Pittendrigh, B., Kroymann, J., Weniger, K., Fritsche, J., Bauke, A., and Mitchell-Olds, T. 2000. Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cottonworm but not diamondback moth. Plant Physiol. 124 : 1007-1019.
- Takabayashi, J., Takahashi, S., Dicke, M., and Posthumus, M.A. 1995. Developmental stage of herbivore Pseudoletia separata affects production of herbivore-induced synomone by corn plants. J. Chem. Ecol. 21 : 273-287.
- Vandenabeele, S., Van Der Kelen, K., Dat, J., Gadjev, I., Boonefaes, T., Morsa, S., Rottiers, P., Slooten, L., Van Montagu, M., Zabeau, M., Inzé, D., and Van Breusegem, F. 2003. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc. Natl. Acad. Sci. USA 100 : 16113-16118.