Abstracts
Résumé
Les forêts de laminaires sont des écosystèmes riches et productifs, longeant les côtes des zones tempérées à polaires. Dans les eaux du golfe du Saint-Laurent, les platiers rocheux de l’île d’Anticosti abritent des forêts de laminaires qui sont encore très peu caractérisées. En 2021 et en 2022, 2 échantillonnages en plongée sous-marine ont permis de caractériser les communautés de laminaires présentes sur 14 sites au sud-ouest de l’île d’Anticosti. Cinq espèces de laminaires (Saccharina latissima, Alaria esculenta, Hedophyllum nigripes/Laminaria digitata, Agarum clathratum, Saccorhiza dermatodea) ont été recensées, avec une grande variabilité d’assemblage entre les sites. Les densités (de 10 ± 5 à 99 ± 20 individus·m−2) et les biomasses (de 0,3 ± 0,1 à 6,4 ± 1,0 kg·m−2) étaient semblables à celles dans d’autres écosystèmes à laminaires de l’est du Canada. Des relations allométriques sur S. latissima ont permis de mettre en évidence des différences entre les sites, probablement dues aux conditions environnementales locales. Cette caractérisation des forêts de laminaires du sud-ouest de l’île d’Anticosti ouvre des perspectives sur le potentiel écologique et économique de cet écosystème.
Mots-clés :
- biomasse,
- densité,
- île d’Anticosti,
- laminaires,
- relation allométrique,
- subarctique
Abstract
Kelp forests are productive, biodiverse, marine ecosystems that occur throughout temperate and polar coastal zones. Those found growing on the rocky outcrops around Anticosti Island (Québec, Canada), which is situated in the Gulf of St. Lawrence, have been little studied. Underwater sampling was conducted in 2021 and 2022 to characterize the kelp community at 14 sites along the southwestern coast of the island. Five kelp species were recorded (Saccharina latissima, Alaria esculenta, Hedophyllum nigripes/Laminaria digitata, Agarum clathratum, and Saccorhiza dermatodea), in various assemblages among between sites. The density varied from 10 ± 5 to 99 ± 20 individuals·m−2 and the biomass, from 0.3 ± 0.1 to 6.4 ± 1.0 kg·m−2. These values are similar to those observed in other kelp forests in eastern Canada. Allometric relationships for S. latissima showed differences between certain sites, likely due to local environmental conditions. This characterization of the kelp forests along the southwestern coast of Anticosti Island highlights the ecological and economic potential of this ecosystem.
Keywords:
- allometric relationship,
- Anticosti Island,
- biomass,
- density,
- kelp,
- subarctic
Download the article in PDF to read it.
Download
Appendices
Remerciements
Cette étude est une contribution au projet Algae-WISE (S. Bélanger, UQAR), financé par l’appel à projets VITES (vols et investigations terrain en technologies et sciences spatiales) de l’Agence spatiale canadienne (no 19FARIMA15) et le temps-navire du Réseau Québec maritime no OSL-2021-TN-05. La structure de plongée scientifique a été soutenue par un projet conjoint du regroupement interinstitutionnel Québec-Océan (chercheuse principale : F. Noisette).
Nous tenons à remercier toutes les participantes et tous les participants des campagnes 2021 et 2022 à l’île d’Anticosti : Bruno Cayouette, Léopold Ghinter, Khashiff Miranda, Geneviève Dupéré, Sara Garneau, ainsi que Véronique Thériault, Lauriane Belles-Isles, Isabelle Tessier et l’équipe de N2Pix pour leur support technique et logistique. Un grand merci également à la Municipalité de L’Île-d’Anticosti, à tous les membres de la communauté anticostienne et particulièrement à Sébastien DeNobile, Geneviève Fournaise, Gaétan Laprise et Katie Gagnon pour leur aide et leur appui. Nous tenons aussi à remercier l’équipe du Naturaliste canadien pour le travail de vérification technique, de révision linguistique et d’édition, ainsi que les experts scientifiques et le rédacteur adjoint qui ont commenté notre manuscrit dans le cadre du processus de révision par les pairs.
Toutes les laminaires récoltées lors de ces échantillonnages ont été déclarées dans les inventaires des collectes de permis de récolte no QUE-PLANTES MARINES-013-2021 et no QUE-PLANTES MARINES-013-2022 octroyés par Pêches et Océans Canada.
Notes biographiques
Stéphanie Roy est étudiante au doctorat en océanographie à l’Institut des sciences de la mer de l’Université du Québec à Rimouski (ISMER-UQAR).
Romy Léger-Daigle a une maîtrise en océanographie de l’ISMER-UQAR.
Raphaël Mabit est étudiant au doctorat en océanographie à l’ISMER-UQAR.
Simon Bélanger est professeur en télédétection au Département de biologie, chimie et géographie de l’UQAR.
Ladd E. Johnson est professeur en écologie marine au Département de biologie de l’Université Laval à Québec.
Christian Nozais est professeur en océanographie au Département de biologie, chimie et géographie de l’UQAR.
Fanny Noisette est professeure en océanographie biologique à l’ISMER-UQAR.
Bibliographie
- Adams, J., 1938. Some marine algae from Anticosti island and the Gaspé peninsula. Canadian Field-Naturalist, 52 : 10-11.
- Adey, W.H. et L.-A.C. Hayek, 2011. Elucidating marine biogeography with macrophytes: Quantitative analysis of the North Atlantic supports the thermogeographic model and demonstrates a distinct Subarctic Region in the Northwestern Atlantic. Northeastern Naturalist, 18 : 1128. https://doi.org/10.1656/045.018.m801.
- Assis, J., Araújo, M.B. et E.A. Serrão, 2018. Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Global Change Biology, 24 : 5566. https://doi.org/10.1111/gcb.13818.
- Bartsch, I., C. Wiencke, K. Bischof, C.M. Buchholz, B.H. Buck, A. Eggert, P. Feuerpfeil, D. Hanelt, S. Jacobsen, R. Karez, U. Karsten, M. Molis, M.Y. Roleda, H. Schubert, R. Schumann, K. Valentin, F. Weinberger et J. Wiese, 2008. The genus Laminaria sensu lato: Recent insights and developments. European Journal of Phycology, 43 : 1-86. https://doi.org/10.1080/09670260701711376.
- Bartsch, I., M. Paar, S. Fredriksen, M. Schwanitz, C. Daniel, H. Hop et C. Wiencke, 2016. Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biology, 39 : 2021-2036. https://doi.org/10.1007/s00300-015-1870-1.
- Basak, J.K., W. Qasim, F.G. Okyere, F. Khan, Y.J. Lee, J. Park et H.T. Kim, 2019. Regression analysis to estimate morphology parameters of pepper plant in a controlled greenhouse system. Journal of Biosystems Engineering, 44 : 57-68. https://doi.org/10.1007/s42853-019-00014-0.
- Bégin, C., L.E. Johnson et J.H. Himmelman, 2004. Macroalgal canopies: Distribution and diversity of associated invertebrates and effects on the recruitment and growth of mussels. Marine Ecology Progress Series, 271 : 121-132. https://doi.org/10.3354/meps271121.
- Bennett, S., T. Wernberg, S.D. Connell, A.J. Hobday, C.R. Johnson et E.S. Poloczanska, 2016. The ‘Great Southern Reef’: Social, ecological and economic value of Australia’s neglected kelp forests. Marine and Freshwater Research, 67 : 47-56. https://doi.org/10.1071/MF15232.
- Bertocci, I., R. Araújo, P. Oliveira et I. Sousa-Pinto, 2015. Potential effects of kelp species on local fisheries. Journal of Applied Ecology, 52 : 12161226. https://doi.org/10.1111/1365-2664.12483.
- Bolton, J.J. et K. Lüning, 1982. Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Marine Biology, 66 : 89-94. https://doi.org/10.1007/BF00397259.
- Bringloe, T.T., D.P. Wilkinson, J. Goldsmit, A.M. Savoie, K. Filbee-Dexter, K.A. Macgregor, K. Howland, C.W. McKindsey et H. Verbruggen, 2022. Arctic marine forest distribution models showcase potentially severe habitat losses for cryophilic species under climate change. Global Change Biology, 28 : 37113727. https://doi.org/10.1111/gcb.16142.
- Buck, B.H. et C.M. Buchholz, 2005. Response of offshore cultivated Laminaria saccharina to hydrodynamic forcing in the North Sea. Aquaculture, 250 : 674691. https://doi.org/10.1016/j.aquaculture.2005.04.062.
- Burrows, M.T., R. Harvey et L. Robb, 2008. Wave exposure indices from digital coastlines and the prediction of rocky shore community structure. Marine Ecology Progress Series, 353 : 1-12. https://doi.org/10.3354/meps07284.
- Campbell, J. et S. Starko, 2021. Allometric models effectively predict Saccharina latissima (Laminariales, Phaeophyceae) fresh weight at local scales. Journal of Applied Phycology, 33 : 491-500. https://doi.org/10.1007/s10811-020-02315-w.
- Cardinal, A., 1990. Répartitions biogéographiques des algues marines benthiques sur les côtes du Québec. Le Naturaliste canadien, 117 : 167-182.
- Costa, M., N. Le Baron, K. Tenhunen, J. Nephin, P. Willis, J.P. Mortimor, S. Dudas et E. Rubidge, 2020. Historical distribution of kelp forests on the coast of British Columbia: 1858–1956. Applied Geography, 120 : 102230. https://doi.org/10.1016/j.apgeog.2020.102230.
- Dalby, D., E. Cowell, W. Syratt et J. Crothers, 1978. An exposure scale for marine shores in western Norway. Journal of the Marine Biological Association of the United Kingdom, 58 : 975-996. https://doi.org/10.1017/S0025315400056903.
- Dayton, P.K., 1985. Ecology of kelp communities. Annual Review of Ecology and Systematics, 16 : 215-245. https://doi.org/10.1146/annurev.es.16.110185.001243.
- Dolliver, J. et N.E. O’Connor, 2022. Estimating growth, loss and potential carbon sequestration of farmed kelp: A case study of Saccharina latissima at Strangford Lough, Northern Ireland. Applied Phycology, 3 : 324339. https://doi.org/10.1080/26388081.2022.2081934.
- Druehl, L.D. et S.I. Hsiao, 1977. Intertidal kelp response to seasonal environmental changes in a British Columbia inlet. Journal of the Fisheries Board of Canada, 34 : 1207-1211. https://doi.org/10.1139/f77-176.
- Druehl, L.D., R. Baird, A. Lindwall, K.E. Lloyd et S. Pakula, 1988. Longline cultivation of some Laminariaceae in British Columbia, Canada. Aquaculture Research, 19 : 253263. https://doi.org/10.1111/j.1365-2109.1988.tb00428.x.
- Duggins, D.O., J.E. Eckman, C.E. Siddon et T. Klinger, 2003. Population, morphometric and biomechanical studies of three understory kelps along a hydrodynamic gradient. Marine Ecology Progress Series, 265 : 57-76. https://doi.org/10.3354/meps265057.
- Elliott Smith, E.A. et M.D. Fox, 2022. Characterizing energy flow in kelp forest food webs: A geochemical review and call for additional research. Ecography, 2022 : e05566. https://doi.org/10.1111/ecog.05566.
- Estes, J.A. et P.D. Steinberg, 1988. Predation, herbivory, and kelp evolution. Paleobiology, 14 : 19-36. https://doi.org/10.1017/S0094837300011775.
- Filbee-Dexter, K., C.J. Feehan et R.E. Scheibling, 2016. Large-scale degradation of a kelp ecosystem in an ocean warming hotspot. Marine Ecology Progress Series, 543 : 141-152. https://doi.org/10.3354/meps11554.
- Filbee-Dexter, K., T. Wernberg, S. Fredriksen, K.M. Norderhaug et M.F. Pedersen, 2019. Arctic kelp forests: Diversity, resilience and future. Global and Planetary Change, 172 : 1-14. https://doi.org/10.1016/j.gloplacha.2018.09.005.
- Filbee-Dexter, K., K.A. MacGregor, C. Lavoie, I. Garrido, J. Goldsmit, L. Castro De La Guardia, K.L. Howland, L.E. Johnson, B. Konar et C.W. McKindsey, 2022. Sea ice and substratum shape extensive kelp forests in the Canadian Arctic. Frontiers in Marine Science, 9 : 1-16. https://doi.org/10.3389/fmars.2022.754074.
- Foreman, R.E., 1984. Studies on Nereocystis growth in British Columbia, Canada. Dans : Bird, C.J. et M.A. Ragan (édit.). Proceedings of the Eleventh International Seaweed Symposium held in Qingdao, People’s Republic of China, 19-25 juin 1983. Developments in Hydrobiology, vol. 22, Springer, Dordrecht, p. 325-332. https://doi.org/10.1007/978-94-009-6560-7_65.
- Gagnon, P., J.H. Himmelman et L.E. Johnson, 2003. Algal colonization in urchin barrens: Defense by association during recruitment of the brown alga Agarum cribrosum. Journal of Experimental Marine Biology and Ecology, 290 : 179196. https://doi.org/10.1016/S0022-0981(03)00077-7.
- Gagnon, P., J.H. Himmelman et L.E. Johnson, 2004. Temporal variation in community interfaces: Kelp-bed boundary dynamics adjacent to persistent urchin barrens. Marine Biology, 144 : 1191-1203. https://doi.org/10.1007/s00227-003-1270-x.
- Gattuso, J.-P., B. Gentili, C.M. Duarte, J. Kleypas, J.J. Middelburg et D. Antoine, 2006. Light availability in the coastal ocean: Impact on the distribution of benthic photosynthetic organisms and their contribution to primary production. Biogeosciences, 3 : 489-513. https://doi.org/10.5194/bg-3-489-2006.
- Gendron, L., P. Gauthier et G. Savard, 2007. Expériences préliminaires de culture de l’algue brune Laminaria longicruris en laboratoire et en mer au large de Paspébiac (Québec) en 2006. Rapport technique canadien des sciences halieutiques et aquatiques, 2731 : viii + 53 p. Disponible en ligne à : https://publications.gc.ca/collections/collection_2012/mpo-dfo/Fs97-6-2731-fra.pdf.
- Gendron, L. et E. Tamigneaux, 2008. Expériences de culture de l’algue brune Saccharina longicruris en 2007 : essais en bassin et en mer au large de Paspébiac et de Grande-Rivière (Québec). Rapport technique canadien des sciences halieutiques et aquatiques, 2820 : x + 48 p. Disponible en ligne à : https://publications.gc.ca/collections/collection_2012/mpo-dfo/Fs97-6-2820-fra.pdf.
- Gendron, L., E. Tamigneaux, C. Leroux et M.-J. Leblanc, 2010. Ajustements du calendrier de culture de la laminaire à long stipe (Saccharina longicruris) en Gaspésie (Québec) pour éviter la colonisation des frondes par le bryozoaire Membranipora membranacea et augmenter le nombre de récoltes annuelles. Rapport technique canadien des sciences halieutiques et aquatiques, 284 : vii + 44 p. Disponible en ligne à : https://waves-vagues.dfo-mpo.gc.ca/library-bibliotheque/342687.pdf.
- Gevaert, F., D. Davoult, A. Creach, R. Kling, M.-A. Janquin, L. Seuront et Y. Lemoine, 2001. Carbon and nitrogen content of Laminaria saccharina in the eastern English Channel: Biometrics and seasonal variations. Journal of the Marine Biological Association of the United Kingdom, 81 : 727-734. https://doi.org/10.1017/S0025315401004532.
- Goldsmit, J., R.W. Schlegel, K. Filbee-Dexter, K.A. MacGregor, L.E. Johnson, C.J. Mundy, A.M. Savoie, C.W. McKindsey, K.L. Howland et P. Archambault, 2021. Kelp in the Eastern Canadian Arctic: Current and future predictions of habitat suitability and cover. Frontiers in Marine Science, 18: 742209. https://doi.org/10.3389/fmars.2021.742209.
- Graham, L.E., J.M. Graham, M.E. Cook et L.W. Wilcox, 2016. Algae. Pearson Education, San Francisco, CA, 616 p.
- Himmelman, J., 1991. Diving observations of subtidal communities in the northern Gulf of St. Lawrence. Dans : Therriault, J.-C. (édit.). Le Golfe du Saint-Laurent : petit océan ou grand estuaire ? Comptes-rendus d’un atelier/symposium tenu à I’Institut Maurice-Lamontagne (Mont-Joli) du 14 au 17 mars 1989. Ministère des Pêches et des Océans, Publication spéciale canadienne des sciences halieutiques et aquatiques 113, p. 319-332. Disponible en ligne à : https://publications.gc.ca/collections/collection_2016/mpo-dfo/Fs41-31-113.pdf.
- Himmelman, J.H. et Y. Lavergne, 1985. Organization of rocky subtidal communities in the St. Lawrence Estuary. Le Naturaliste canadien, 112 : 143-154.
- Himmelman, J.H. et H. Nédélec, 1990. Urchin foraging and algal survival strategies in intensely grazed communities in eastern Canada. Canadian Journal of Fisheries and Aquatic Sciences, 47 : 1011-1026. https://doi.org/10.1139/f90-116.
- Hop, H., C. Wiencke, B. Vögele et N.A. Kovaltchouk, 2012. Species composition, zonation, and biomass of marine benthic macroalgae in Kongsfjorden, Svalbard. Botanica Marina, 55 : 399-414. https://doi.org/10.1515/bot-2012-0097.
- Hurd, C.L., M. Quick, C.L. Stevens, B.E. Laval, P.J. Harrison et L.D. Druehl, 1994. A low-volume flow tank for measuring nutrient uptake by large macrophytes. Journal of Phycology, 30 : 892-896. https://doi.org/10.1111/j.0022-3646.1994.00892.x.
- Jackson, G.A. et C.D. Winant, 1983. Effect of a kelp forest on coastal currents. Continental Shelf Research, 2 : 75-80. https://doi.org/10.1016/0278-4343(83)90023-7.
- Johnson, C.R. et K.H. Mann, 1988. Diversity, patterns of adaptation, and stability of Nova Scotian kelp beds. Ecological Monographs, 58 : 129-154. https://doi.org/10.2307/1942464.
- Johnson, L.E., K.A. MacGregor, C.A. Narvaez, T.S. Suskiewicz, S. Hawkins, K. Bohn, L. Firth et G. Williams, 2019. Subtidal rocky shores of the north-west Atlantic Ocean: The complex ecology of a simple ecosystem. Dans : Hawkins, S.J., K. Bohn, L.B. Firth et G.A. Williams (édit.). Interactions in the marine benthos: Global patterns and processes. Cambridge University Press, Cambridge, p. 90-127. https://doi.org/10.1017/9781108235792.006.
- Jones, C.G., J.H. Lawton et M. Shachak, 1994. Organisms as ecosystem engineers. Oikos, 69 : 373-386. https://doi.org/10.1007/978-1-4612-4018-1_14.
- Kawamata, S., 2010. Inhibitory effects of wave action on destructive grazing by sea urchins: A review. Bulletin of Fisheries Research Agency, 32 : 95-102. Disponible en ligne à : http://tuna.fra.affrc.go.jp/bulletin/bull/bull32/95-102.pdf.
- Keats, D., G. South et D. Steele, 1985. Algal biomass and diversity in the upper subtidal at a pack-ice disturbed site in eastern Newfoundland. Marine Ecology Progress Series, 25 : 151158. https://doi.org/10.3354/meps025151.
- Krause-Jensen, D., N. Marbà, B. Olesen, M.K. Sejr, P.B. Christensen, J. Rodrigues, P.E. Renaud, T.J.S. Balsby et S. Rysgaard, 2012. Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Global Change Biology, 18 : 2981-2994. https://doi.org/10.1111/j.1365-2486.2012.02765.x.
- Kregting, L., A.J. Blight, B, Elsäßer et G. Savidge, 2016. The influence of water motion on the growth rate of the kelp Laminaria digitata. Journal of Experimental Marine Biology and Ecology, 478 : 8695. https://doi.org/10.1016/j.jembe.2016.02.006.
- Krumhansl, K.A. et R.E. Scheibling, 2011. Detrital production in Nova Scotian kelp beds: Patterns and processes. Marine Ecology Progress Series, 421 : 67-82. https://doi.org/10.3354/meps08905.
- Krumhansl, K.A. et R.E. Scheibling, 2012. Production and fate of kelp detritus. Marine Ecology Progress Series, 467 : 281-302. https://doi.org/10.3354/meps09940.
- Laanaya, F., A. St-Hilaire et E. Gloaguen, 2017. Water temperature modelling: Comparison between the generalized additive model, logistic, residuals regression and linear regression models. Hydrological Sciences Journal, 62 : 1078-1093. https://doi.org/10.1080/02626667.2016.1246799.
- Leclerc, J.C., P. Riera, C. Leroux, L. Lévêque et D. Davoult, 2013. Temporal variation in organic matter supply in kelp forests: Linking structure to trophic functioning. Marine Ecology Progress Series, 494 : 87-105. https://doi.org/10.3354/meps10564.
- Ling, S., R. Scheibling, A. Rassweiler, C. Johnson, N. Shears, S. Connell, A. Salomon, K. Norderhaug, A. Pérez-Matus et J. Hernández, 2015. Global regime shift dynamics of catastrophic sea urchin overgrazing. Philosophical Transactions of the Royal Society B: Biological Sciences, 370 : 1-10. https://doi.org/10.1098/rstb.2013.0269.
- Macreadie, P.I., A. Anton, J.A. Raven, N. Beaumont, R.M. Connolly, D.A. Friess, J.J. Kelleway, H. Kennedy, T. Kuwae, P.S. Lavery, C.E. Lovelock, D.A. Smale, E.T. Apostolaki, T.B. Atwood, J. Baldock, T.S. Bianchi, G.L. Chmura, B.D. Eyre, J.W. Fourqurean, J.M. Hall-Spencer, M. Huxham, I.E. Hendriks, D. Krause-Jensen, D. Laffoley, T. Luisetti, N. Marba, P. Masque, K.J. McGlathery, J.P. Megonigal, D. Murdiyarso, B.D. Russell, R. Santos, O. Serrano, B.R.Silliman, K. Watanabe et C.M. Duarte, 2019. The future of blue carbon science. Nature Communications, 10 : 3998. https://doi.org/10.1038/s41467-019-11693-w.
- McDevit, D.C. et G.W. Saunders, 2010. A DNA barcode examination of the Laminariaceae (Phaeophyceae) in Canada reveals novel biogeographical and evolutionary insights. Phycologia, 49 : 235248. https://doi.org/10.2216/PH09-36.1.
- Merzouk, A. et L.E. Johnson, 2011. Kelp distribution in the northwest Atlantic Ocean under a changing climate. Journal of Experimental Marine Biology and Ecology, 400 : 90-98. https://doi.org/10.1016/j.jembe.2011.02.020.
- Miller, R.J. et H.M.Page, 2012. Kelp as a trophic resource for marine suspension feeders: A review of isotope-based evidence. Marine Biology, 159 : 1391-1402. https://doi.org/10.1007/s00227-012-1929-2.
- [MPO] Pêches et Océan Canada, 2022. Niveaux – Relatifs aux zéros des cartes. Disponible en ligne à : https://www.marees.gc.ca/fr/stations/02360/2022-09-04?tz=EST&unit=m. [Visité le 2022-12-20].
- Narvaez Diaz, C., 2018. Green urchin demography in a subartic ecosystem: Patterns and processes. Thèse de doctorat, Université Laval, Québec, 118 p. Disponible en ligne à : https://corpus.ulaval.ca/server/api/core/bitstreams/9146adf2-605f-410d-b55d-b424f39d1129/content.
- Neiva, J., E.A. Serrão, C. Paulino, L. Gouveia, A. Want, É. Tamigneaux, M. Ballenghien, S. Mauger, L. Fouqueau, C. Engel-Gautier, C. Destombe et M. Valero, 2020. Genetic structure of amphi-Atlantic Laminaria digitata (Laminariales, Phaeophyceae) reveals a unique range-edge gene pool and suggests post-glacial colonization of the NW Atlantic. European Journal of Phycology, 55 : 517528. https://doi.org/10.1080/09670262.2020.1750058.
- Noisette, F. et C. Hurd, 2018. Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification. Functional Ecology, 32 : 1329-1342. https://doi.org/10.1111/1365-2435.13067.
- Nozères, C., M.-N. Bourassa, M.-H. Gendron, S. Plourde, C. Savenkoff, H. Bourdages, H. Benoît et F. Bolduc, 2015. Using annual ecosystemic surveys to assess biodiversity in the Gulf of St. Lawrence. Canadian Technical Report of Fisheries and Aquatic Sciences 3149, Pêches et Océans Canada, 126 p. Disponible en ligne à : https://publications.gc.ca/collections/collection_2015/mpo-dfo/Fs97-6-3149-eng.pdf.
- [OGSL] Observatoire global du Saint-Laurent, 2022. Banque de données sur les macroalgues marines de l’estuaire et du golfe Saint-Laurent. Disponible en ligne à : https://catalogue.ogsl.ca/fr/dataset/34c94109-73fb-49ef-a595-c8e20203df5c.
- Ojeda, F.P. et B. Santelices, 1984. Invertebrate communities in holdfasts of the kelp Macrocystis pyrifera from southern Chile. Marine Ecology Progress Series, 16 : 65-73. http://doi.org/10.3354/meps016065.
- Pérot, A. et V. Provost, 2008. Guide d’intervention en matière de protection et de mise en valeur des habitats littoraux d’intérêt dans la MRC de la Minganie. Comité ZIP Côte-Nord du Golfe, vii + 127 p. Disponible en ligne à : https://catalogue.ogsl.ca/data/zip-cote-nord/047884fc-e80b-4a18-a170-083371ce5833/guide_minganie.pdf.
- Petryk, A.A., 1981. Géologie de la partie ouest de l’île d’Anticosti : rapport préliminaire. Ministère de l’Énergie et des Ressources naturelles, Direction générale des énergies conventionnelles, Québec, 45 p. Disponible en ligne à : https://gq.mines.gouv.qc.ca/documents/examine/DPV815/DPV815.pdf.
- Rogers-Bennett, L. et C.A., Catton, 2019. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Scientific Reports, 9 : 1-9. https://doi.org/10.1038/s41598-019-51114-y.
- Saucier, F.J., F. Roy, D. Gilbert, P. Pellerin et H. Ritchie, 2003. Modeling the formation and circulation processes of water masses and sea ice in the Gulf of St. Lawrence, Canada. Journal of Geophysical Research: Oceans, 108 : 3269–3289. https://doi.org/10.1029/2000JC000686.
- Scheibling, R.E., 2020. Interactions among lobsters, sea urchins, and kelp in Nova Scotia, Canada. Dans : David, B., A. Guille et J.-P. Feral (édit.), Echinoderms through time, CRC Press, London, p. 865-870.
- Scheibling, R., et P. Gagnon, 2009. Temperature-mediated outbreak dynamics of the invasive bryozoan Membranipora membranacea in Nova Scotian kelp beds. Marine Ecology Progress Series, 390 : 113. https://doi.org/10.3354/meps08207.
- Scheibling, R.E., A.W. Hennigar et T. Balch, 1999. Destructive grazing, epiphytism, and disease: The dynamics of sea urchin - kelp interactions in Nova Scotia. Canadian Journal of Fisheries and Aquatic Sciences, 56 : 2300-2314. https://doi.org/10.1139/f99-163.
- Scheibling, R.E., C.J. Feehan et J.-S. Lauzon-Guay, 2013. Climate change, disease and the dynamics of a kelp-bed ecosystem in Nova Scotia. Dans : Fernández-Palacios, J.M., L. de Nascimento, J.C. Hernández, S. Clemente, A. González et J.P. Díaz-González (édit.). Climate change perspectives from the Atlantic: Past, present and future. Servicio de Publicaciones, Universidad de La Laguna, Santa Cruz de Tenerife, p. 361-387. Disponible en ligne à : https://riull.ull.es/xmlui/bitstream/handle/915/23542/23%20Intro%20Libro%20Climate%20change%202013.pdf?sequence=1&isAllowed=y.
- Schmidt, A.L. et R.E. Scheibling, 2006. A comparison of epifauna and epiphytes on native kelps (Laminaria species) and an invasive alga (Codium fragile ssp. tomentosoides) in Nova Scotia, Canada. Botanica Marina, 49 : 315-330. https://doi.org/10.1515/BOT.2006.039.
- Schroeder, S.B., L. Boyer, F. Juanes et M. Costa, 2020. Spatial and temporal persistence of nearshore kelp beds on the west coast of British Columbia, Canada using satellite remote sensing. Remote Sensing in Ecology and Conservation, 6 : 327-343. https://doi.org/10.1002/rse2.142.
- Sharp, G., M. Allard, A. Lewis, R. Semple et G. Rochefort, 2008. The potential for seaweed resource development in subarctic Canada; Nunavik, Ungava Bay. Journal of Applied Phycology, 20 : 491498. https://doi.org/10.1007/s10811-008-9323-7.
- Smale, D.A., 2020. Impacts of ocean warming on kelp forest ecosystems. New Phytologist, 225 : 1447-1454. https://doi.org/10.1111/nph.16107.
- Smale, D.A., M.T. Burrows, P. Moore, N. O’Connor et S.J. Hawkins, 2013. Threats and knowledge gaps for ecosystem services provided by kelp forests: A northeast Atlantic perspective. Ecology Evolution, 3 : 4016-4038. https://doi.org/10.1002/ece3.774.
- Smith, B.D., 1985. Recovery following experimental harvesting of Laminaria longicruris and L. digitata in southwestern Nova Scotia. Helgoländer Meeresuntersuchungen, 39 : 83-101. https://doi.org/10.1007/BF01997523.
- Smith, K.E., P.J. Moore, N.G. King et D.A. Smale, 2022. Examining the influence of regional-scale variability in temperature and light availability on the depth distribution of subtidal kelp forests. Limnology and Oceanography, 67 : 314-328. https://doi.org/10.1002/lno.11994.
- Smoliński, S. et K. Radtke, 2017. Spatial prediction of demersal fish diversity in the Baltic Sea: Comparison of machine learning and regression-based techniques. ICES Journal of Marine Science, 74 : 102-111. https://doi.org/10.1093/icesjms/fsw136.
- South, G.R., 1984. A checklist of marine algae of eastern Canada, second revision. Canadian Journal of Botany, 62 : 680-704. https://doi.org/10.1139/b84-102.
- St-Pierre, A.P. et P. Gagnon, 2020. Kelp-bed dynamics across scales: Enhancing mapping capability with remote sensing and GIS. Journal of Experimental Marine Biology and Ecology, 522 : 151246. https://doi.org/10.1016/j.jembe.2019.151246.
- Stagnol, D., M. Macé, C. Destombe et D. Davoult, 2016. Allometric relationships for intertidal macroalgae species of commercial interest. Journal of Applied Phycology, 28 : 3407-3411. https://doi.org/10.1007/s10811-016-0860-1.
- Starko, S. et P.T. Martone, 2016. An empirical test of ‘universal’ biomass scaling relationships in kelps: Evidence of convergence with seed plants. New Phytologist, 212 : 719-729. https://doi.org/10.1111/nph.14120.
- Starko, S., L.A. Bailey, E. Creviston, K.A. James, A. Warren, M.K. Brophy, A. Danasel, M.P. Fass, J.A. Townsend et C.J. Neufeld, 2019. Environmental heterogeneity mediates scale-dependent declines in kelp diversity on intertidal rocky shores. PLoS ONE, 14 : e0213191. https://doi.org/10.1371/journal.pone.0213191.
- Steneck, R.S., M.H. Graham, B.J. Bourque, D. Corbett, J.M. Erlandson, J.A. Estes et M.J. Tegner, 2002. Kelp forest ecosystems: Biodiversity, stability, resilience and future. Environmental Conservation, 29 : 436-459. https://doi.org/10.1017/s0376892902000322.
- Tait, L.W., 2019. Giant kelp forests at critical light thresholds show compromised ecological resilience to environmental and biological drivers. Estuarine, Coastal and Shelf Science, 219 : 231-241. https://doi.org/10.1016/j.ecss.2019.02.026.
- Tamigneaux, É. et L.E. Johnson, 2016. Les macroalgues du Saint-Laurent : une composante essentielle d’un écosystème marin unique et une ressource naturelle précieuse dans un contexte de changement global. Le Naturaliste canadien, 140 (2) : 62-73. https://doi.org/10.7202/1036505ar.
- Teagle, H., S.J. Hawkins, P.J. Moore et D.A. Smale, 2017. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. Journal of Experimental Marine Biology and Ecology, 492 : 81-98. https://doi.org/10.1016/j.jembe.2017.01.017.
- Tuya, F., K. Larsen et V. Platt, 2011. Patterns of abundance and assemblage structure of epifauna inhabiting two morphologically different kelp holdfasts. Hydrobiologia, 658 : 373-382. https://doi.org/10.1007/s10750-010-0527-x.
- Twenhofel, W.H., 1927. Geological survey: Geology of Anticosti island. Department of Mines, Ottawa, 481 p.
- Vadas, R.L., 1969. The ecology of Agarum and the kelp bed community. Thèse de doctorat, Université de Washington, Washington, 560 p.
- Vásquez, J.A., S. Zuñiga, F. Tala, N. Piaget, D.C. Rodríguez et J.M.A. Vega, 2014. Economic valuation of kelp forests in northern Chile: Values of goods and services of the ecosystem. Journal of Applied Phycology, 26 : 10811088. https://doi.org/10.1007/s10811-013-0173-6.
- Wernberg, T., B.D. Russell, P.J. Moore, S.D. Ling, D.A. Smale, A. Campbell, M.A. Coleman, P.D. Steinberg, G.A. Kendrick et S.D. Connell, 2011. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. Journal of Experimental Marine Biology and Ecology, 400 : 716. https://doi.org/10.1016/j.jembe.2011.02.021.
- Wilson, K.L., L.M. Kay, A.L. Schmidt et H.K. Lotze, 2015. Effects of increasing water temperatures on survival and growth of ecologically and economically important seaweeds in Atlantic Canada: Implications for climate change. Marine Biology, 162 : 2431-2444. https://doi.org/10.1007/s00227-015-2769-7.
- Wilson, K.L., M.A. Skinner, H.K. Lotze et C. Sorte, 2019. Projected 21st-century distribution of canopy-forming seaweeds in the Northwest Atlantic with climate change. Diversity and Distributions, 25 : 582-602. https://doi.org/10.1111/ddi.12897.
- Zhu, G., A. Ebbing, T.J. Bouma et K.R. Timmermans, 2021. Morphological and physiological plasticity of Saccharina latissima (Phaeophyceae) in response to different hydrodynamic conditions and nutrient availability. Journal of Applied Phycology, 33 : 24712483. https://doi.org/10.1007/s10811-021-02428-w.