Abstracts
Résumé
Les cyanotoxines présentes dans l’environnement menacent l’intégrité des écosystèmes aquatiques et la santé humaine. Dans un contexte où les changements climatiques sont susceptibles de favoriser les efflorescences cyanobactériennes, il nous apparaît nécessaire de mettre à jour nos connaissances sur ce sujet. Cette revue de littérature synthétise les effets de différents facteurs environnementaux sur la production et la dégradation des cyanotoxines ainsi que sur la détoxification de la colonne d’eau dans les écosystèmes naturels d’eau douce et saumâtre au Québec. Les effets de certains facteurs traités dans cet article sont bien connus (nutriments, lumière, température de l’eau, biodégradation et activité bactérienne), alors que d’autres, aussi importants (salinité, vent, métaux-traces, pesticides et contact avec les sédiments), mériteraient d’être plus étudiés.
Mots-clés :
- changements globaux,
- cyanotoxines,
- facteurs anthropiques,
- milieux naturels,
- synthèse de toxines
Abstract
Cyanotoxins in our environment threaten the integrity of aquatic ecosystems and human health. As climate change is suspected to favour cyanobacterial blooms, it is important to have an up-to-date picture of our knowledge concerning this subject. This review summarizes the effects of various environmental factors on the production and degradation of cyanotoxins, and on the detoxification of the water column in freshwater and brackish ecosystems in Quebec (Canada). The influence of some factors discussed in this paper is well known (e.g., nutrients, light, water temperature and bacterial activity), while that of others, which are equally important (e.g., salinity, wind, trace metals, pesticides and sediments), would benefit from further study.
Keywords:
- anthropogenic factors,
- cyanotoxins,
- global changes,
- natural environment,
- toxin synthesis
Download the article in PDF to read it.
Download
Appendices
Remerciements
Nous reconnaissons le soutien financier d’Ouranos – Consortium sur la climatologie régionale et l'adaptation aux changements climatiques pour une subvention accordée aux professeurs B. E. Beisner, P. Juneau et I. Gregory-Eaves, en collaboration avec le MELCC et le ministère des Forêts, de la Faune et des Parcs (MFFP). Nous reconnaissons également le soutien financier du Groupe de recherche interuniversitaire en limnologie (GRIL), un regroupement stratégique financé par le Fonds de recherche du Québec – Nature et technologies (FRQNT). De plus, nous souhaitons remercier les membres du laboratoire de B. E. Beisner de l’Université du Québec à Montréal (UQAM) et du laboratoire de I. Gregory-Eaves à l’Université McGill pour leurs commentaires et leur soutien au cours du processus d’écriture de cette revue de littérature. Nous souhaitons faire mention du travail bénévole des réviseurs scientifiques et de l’équipe éditoriale du Naturaliste canadien. Finalement, nous voulons remercier Lissa Dormoy-Boulanger pour ses connaissances du logiciel Photoshop.
Notes biographiques
Jade Dormoy-Boulanger est étudiante à la maîtrise en biologie à l’Université du Québec à Montréal (UQAM) et membre étudiante du Groupe de recherche interuniversitaire en limnologie (GRIL).
Irene Gregory-Eaves est professeure agrégée au département de biologie de l’Université McGill, titulaire de la Chaire de recherche du Canada en écologie des eaux douces et des changements globaux et membre chercheuse du GRIL.
Philippe Juneau est professeur titulaire au département de biologie de l’UQAM, membre du Groupe de recherche en toxicologie de l’environnement (TOXEN) et membre du GRIL.
Beatrix E. Beisner est professeure titulaire au département de biologie de l’UQAM et directrice du GRIL.
Bibliographie
- Affan, A., H.S. Khomayis, S. MarzoogAl-Harbi, M. Haque et S. Khan, 2015. Effect of environmental factors on cyanobacterial abundance and cyanotoxins production in natural and drinking water, Bangladesh. Pakistan Journal of Biological Sciences, 18 : 50-58. https://doi.org/10.3923/pjbs.2015.50.58.
- Alexova, R., M. Fujii, D. Birch, J. Cheng, T.D. Waite, B.C. Ferrari et B.A. Neilan, 2011. Iron uptake and toxin synthesis in the bloom-forming Microcystis aeruginosa under iron limitation. Environmental Microbiology, 13 : 1064-1077. https://doi.org/10.1111/j.1462-2920.2010.02412.x.
- Antoniou, M.G., J.A. Shoemaker, A.A. delaCruz et D.D. Dionysiou, 2008. Unveiling new degradation intermediates/pathways from the photocatalytic degradation of microcystin-LR. Environmental Science and Technology, 42 : 8877-8883. https://doi.org/10.1021/es801637z.
- Banack, S.A., T. Caller, P. Henegan, J. Haney, A. Murby, J.S. Metcalf, J. Powell, P. Alan et E. Stommel, 2015. Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis. Toxins, 7 : 322-336. https://doi.org/10.3390/toxins7020322.
- Bar-Yosef, Y., A. Sukenik, O. Hadas, Y. Viner-Mozzini et A. Kaplan, 2010. Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons. Current Biology, 20 : 1557-1561. https://doi.org/10.1016/j.cub.2010.07.032.
- BayerGroup, 2019. Products | Roundup WeatherMAX | Soybeans | Roundup Ready PLUS. Disponible en ligne à : https://www.roundupreadyplus.com/products/soybeans/roundupweathermax. [Visité le 2019-12-19].
- Beaulieu, M., G. Marcil, Y. Huot, J. Lacey, R. Leconte et H. Cabana, 2014. Pesticides et phytoplancton au Québec : Conditions propices aux efflorescences cyanobactériennes? Université de Sherbrooke, Sherbrooke, 132 p.
- Boopathi, T. et J.S Ki, 2014. Impact of environmental factors on the regulation of cyanotoxin production. Toxins, 6 : 1951-1978. https://doi.org/10.3390/toxins6071951.
- Boutray, M.-L. de, E. Maghsoudi, M. Ndong et S. Dorner, 2017. Revue de littérature sur les cyanotoxines dans les milieux aquatiques d’eau douce : leurs effets potentiels sur la santé des usagers et les critères ou seuils d’alerte de toxicité chronique et aiguë. Chaire de recherche du Canada en protection des sources d’eau potable, Polytechnique Montréal, Montréal, 188 p. Disponible en ligne à : https://www.google.ca/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjFsenh98zqAhVjleAKHc7lA24QFjABegQIAxAB&url=https%3A%2F%2Fshare.polymtl.ca%2Falfresco%2Fservice%2Fapi%2Fpath%2Fcontent%3Bcm%3Acontent%2Fworkspace%2FSpacesStore%2FCompany%2520Home%2FSites%2Fchaire-eau-web%2FdocumentLibrary%2Fsarah_dorner%2FDorner_cyanotoxines_revue_31_janvier_2017.pdf%3Fa%3Dtrue%26guest%3Dtrue&usg=AOvVaw3EueavVtdKOH_d9T-uvM_e.
- Bowling, L.C., S. Blais et M. Sinotte, 2015. Heterogeneous spatial and temporal cyanobacterial distributions in Missisquoi Bay, Lake Champlain: An analysis of a 9 year data set. Journal of Great Lakes Research, 41 : 164-179. https://doi.org/10.1016/j.jglr.2014.12.012.
- Brêda-Alves, F., F.P. Militão, B. FreitasdeAlvarenga, P.F. Miranda, V. deOliveiraFernandes, M.K. Cordeiro-Araújo et M.A. Chia, 2020. Clethodim (herbicide) alters the growth and toxins content of Microcystis aeruginosa and Raphidiopsis raciborskii. Chemosphere, 243 : 2-9. https://doi.org/10.1016/j.chemosphere.2019.125318.
- Briand, E., J.F. Humbert, K. Tambosco, M. Bormans et W.H. Gerwick, 2016. Role of bacteria in the production and degradation of Microcystis cyanopeptides. MicrobiologyOpen, 5 : 469-478. https://doi.org/10.1002/mbo3.343.
- Burns, J.M., S. Hall et J.L. Ferry, 2009. The adsorption of saxitoxin to clays and sediments in fresh and saline waters. Water Research, 43 : 1899-1904. https://doi.org/10.1016/j.watres.2009.02.004.
- Casero, M.C., A. Ballot, R. Agha, A. Quesada et S. Cirés, 2014. Characterization of saxitoxin production and release and phylogeny of sxt genes in paralytic shellfish poisoning toxin-producing Aphanizomenon gracile. Harmful Algae, 37 : 28:37. https://doi.org/10.1016/j.hal.2014.05.006.
- Chaffin, J.D., T.W. Davis, D.J. Smith, M.M. Baer et G.J. Dick, 2018. Interactions between nitrogen form, loading rate, and light intensity on Microcystis and Planktothrix growth and microcystin production. Harmful Algae, 73 : 84-97. https://doi.org/10.1016/j.hal.2018.02.001.
- Chen, W., L. Song, L. Peng, N. Wan, X. Zhang et N. Gan, 2008. Reduction in microcystin concentrations in large and shallow lakes: Water and sediment-interface contributions. Water Research, 42 : 763-773. https://doi.org/10.1016/j.watres.2007.08.007.
- Cheng, S.Y., Y. Zhou, C.M. Irvin, B. Kirkpatrick et L.C. Backer, 2007. Characterization of aerosols containing microcystin. Marine Drugs, 5 : 136-150. https://doi.org/10.3390/md20070010.
- Chorus, I. et J. Bartram, 1999. Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. E & FN Spon, London, 400 p.
- Cirés, S. et A. Ballot, 2016. A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae, 54 : 21-43. https://doi.org/10.1016/j.hal.2015.09.007.
- Cousins, I.T., D.J. Bealing, H.A. James et A. Sutton, 1996. Biodegradation of microcystin-LR by indigenous mixed bacterial populations. Water Research, 30 : 481-485. https://doi.org/10.1016/0043-1354(95)00189-1.
- Cronberg, G. et H. Annadotter, 2006. Manual on aquatic cyanobacteria, a photo guide and a synopsis of their toxicology. International Society for the Study of Harmful Algae and the United Nations Educational, Scientific and Cultural Organisation, Copenhagen, 106 p.
- Deblois, C.P. et P. Juneau, 2010. Relationship between photosynthetic processes and microcystin in Microcystis aeruginosa grown under different photon irradiances. Harmful Algae, 9 : 18-24. https://doi.org/10.1016/j.hal.2009.07.001.
- Dias, E., P. Pereira et S. Franca, 2002. Production of paralytic shellfish toxins by Aphanizomenon sp. lmecya 31 (cyanobacteria). Journal of Phycology, 38 : 705-712. https://doi.org/10.1046/j.1529-8817.2002.01146.x.
- Donald, D.B., M.J. Bogard, K. Finlay et P.R. Leavitt, 2011. Comparative effects of urea, ammonium, and nitrate on phytoplankton abundance, community composition, and toxicity in hypereutrophic freshwaters. Limnology and Oceanography, 56 : 2161-2175. https://doi.org/10.4319/lo.2011.56.6.2161.
- Downing, S., S.A. Banack, J.S. Metcalf, P.A. Cox et T.G. Downing, 2011. Nitrogen starvation of cyanobacteria results in the production of β-N-methylamino-L-alanine. Toxicon, 58 : 187-194. https://doi.org/10.1016/j.toxicon.2011.05.017.
- Dyble, J., P.A. Tester et R.W. Litaker, 2006. Effects of light intensity on cylindrospermopsin production in the cyanobacterial HAB species Cylindrospermopsis raciborskii. African Journal of Marine Science, 28 : 309-312. https://doi.org/10.2989/18142320609504168.
- Forlani, G., M. Pavan, M. Gramek, P. Kafarski et J. Lipok, 2008. Biochemical bases for a widespread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant and Cell Physiology, 49 : 443-456. https://doi.org/10.1093/pcp/pcn021.
- Fujii, M., A.L. Rose et T.D. Waite, 2011. Iron uptake by toxic and nontoxic strains of Microcystis aeruginosa. Applied and Environmental Microbiology, 77 : 7068-7071. https://doi.org/10.1128/AEM.05270-11.
- GeorgesdesAulnois, M., P. Roux, A. Caruana, D. Réveillon, E. Briand, F. Hervé, V. Savar, H. Bormans et Z. Amzil, 2019. Physiological and metabolic responses of freshwater and brackish strains of Microcystis aeruginosa acclimated to a salinity gradient: insight into salt tolerance. Applied and Environmental Microbiology, 85 : 1614-1619. https://doi.org/10.1128/aem.01614-19.
- Giani, A., D.F. Bird, Y.T. Prairie et J.F. Lawrence, 2005. Empirical study of cyanobacterial toxicity along a trophic gradient of lakes. Canadian Journal of Fisheries and Aquatic Sciences, 62 : 2100-2109. https://doi.org/10.1139/f05-124.
- Giroux, I. 2019. Présence de pesticides dans l’eau au Québec : Portrait et tendances dans les zones de maïs et de soya – 2015 à 2017. Québec, ministère de l’Environnement et de la Lutte contre les changements climatiques, Direction générale du suivi de l’état de l’environnement, 64 p. + 6 ann. Disponible en ligne à : http://142.213.133.76/pesticides/mais_soya/portrait2015-2017/rapport-2015-2017.pdf.
- Gouvêa, S.P., G.L. Boyer et M.R. Twiss, 2008. Influence of ultraviolet radiation, copper, and zinc on microcystin content in Microcystis aeruginosa (Cyanobacteria). Harmful Algae, 7 : 194-205. https://doi.org/10.1016/j.hal.2007.07.003.
- Hameed, S., L.A. Lawton, C. Edwards, A. Khan, A., U. Farooq et F.A. Khan, 2017. Effects of temperature and salinity on the production of cell biomass, chlorophyll-a and intra- and extracellular nodularins (NOD) and nodulopeptin 901 produced by Nodularia spumigena KAC 66. Journal of Applied Phycology, 29 : 1801-1810. https://doi.org/10.1007/s10811-017-1115-5.
- Harland, F.M.J., S.A. Wood, E. Moltchanova, W.M. Williamson et S. Gaw, 2013. Phormidium autumnale growth and anatoxin-a production under iron and copper stress. Toxins, 5 : 2504-2521. https://doi.org/10.3390/toxins5122504.
- Hébert, M.P., V. Fugère et A. Gonzalez, 2019. The overlooked impact of rising glyphosate use on phosphorus loading in agricultural watersheds. Frontiers in Ecology and the Environment, 17 : 48-56. https://doi.org/10.1002/fee.1985.
- Heresztyn, T. et B.C. Nicholson, 1997. Nodularin concentrations in lakes Alexandrina and Albert, South Australia, during a bloom of the cyanobacterium (Blue-Green alga) Nodularia spumigena and degradation of the toxin. Environmental Toxicology and Water Quality, 12 : 273-282. https://doi.org/10.1002/(SICI)1098-2256(1997)12:4273::AID-TOX13.0.CO;2-5.
- Hiller, S., B. Krock, A. Cembella et B. Luckas, 2007. Rapid detection of cyanobacterial toxins in precursor ion mode by liquid chromatography tandem mass spectrometry. Journal of Mass Spectometry, 47 : 1238-1250. https://doi.org/10.1002/jms.1257.
- [HMBD] Human Matabolome Database, 2020. Showing metabocard for Sarcosine (HMDB0000271). Disponible en ligne à : https://hmdb.ca/metabolites/HMDB0000271. [Visité le 2020-10-28].
- Ho, L., D. Hoefel, C.P. Saint et G. Newcombe, 2007. Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter. Water Research, 41 : 4685-4695. https://doi.org/10.1016/j.watres.2007.06.057.
- Ho, L., E. Sawade et G. Newcombe, 2012. Biological treatment options for cyanobacteria metabolite removal - A review. Water Research, 46 : 1536-1548. https://doi.org/10.1016/j.watres.2011.11.018.
- Huang, B., S. Xu, A.J. Miao, L. Xiao et L.Y. Yang, 2015. Cadmium toxicity to Microcystis aeruginosa PCC 7806 and its microcystin-lacking mutant. PLoS ONE, 10 : 1-18. https://doi.org/10.1371/journal.pone.0116659.
- Hudon, C., M. DeSève et A. Cattaneo, 2014. Increasing occurrence of the benthic filamentous cyanobacterium Lyngbya wollei: A symptom of freshwater ecosystem degradation. Freshwater Science, 33 : 606-618. https://doi.org/10.1086/675932.
- Kaebernick, M. et B.A Neilan, 2001. Ecological and molecular investigations of cyanotoxin production. FEMS Microbiology Ecology, 35 : 1-9. https://doi.org/10.1016/S0168-6496(00)00093-3.
- Kenins A., 2017. Validation of the noxious cyanophyte Microseirawollei (Farlow ex Gomont) G.B.McGregor & Sendall (Oscillatoriaceae). Notulae algarum, 43 : 1-3.
- Klein, A.R., D.S. Baldwin, S. Darren et E. Silvester, 2013. Proton and iron binding by the cyanobacterial toxin microcystin-LR. Environmental Science and Technology, 47 : 5178-5184. https://doi.org/10.1021/es400464e.
- Klitzke, S., S. Apelt, C. Weiler, J. Fastner et I. Chorus, 2010. Retention and degradation of the cyanobacterial toxin cylindrospermopsin in sediments - The role of sediment preconditioning and DOM composition. Toxicon, 55 : 999-1007. https://doi.org/10.1016/j.toxicon.2009.06.036.
- Kotak, B.G., S.L. Kenefick, D.L. Fritz, C.G. Rousseaux, E.E. Prepas et S.E. Hrudey, 1993. Occurrence and toxicological evaluation of cyanobacterial toxins in Alberta lakes and farm dugouts. Water Research, 27 : 495-506. https://doi.org/10.1016/0043-1354(93)90050-R.
- Kotak, B.G., A.K.-Y. Lam, E.E. Prepas, S.L. Kenefick et S.E. Hrudey, 1995. Variability of the hepatotoxin microcystin‐Lr in hypereutrophic drinking water lakes. Journal of Phycology, 31 : 248-263. https://doi.org/10.1111/j.0022-3646.1995.00248.x.
- Krishnamurthy, T., L. Szafraniec, D.F. Hunt, J. Shabanowitz, J.R. Yates, C.R. Hauer, W.W. Carmichael, O. Skulberg, G.A. Codd et S. Missler, 1989. Structural characterization of toxic cyclic peptides from blue-green algae by tandem mass spectrometry. Proceedings of the National Academy of Sciences of the United States of America, 86 : 770-774. https://doi.org/10.1073/pnas.86.3.770.
- Lemes, G.A.F., R. Kersanach, L. da S. Pinto, O.A. Dellagostin, J.S. Yunes et A. Matthiensen, 2008. Biodegradation of microcystins by aquatic Burkholderia sp. from a South Brazilian coastal lagoon. Ecotoxicology and Environmental Safety, 69 : 358-365. https://doi.org/10.1016/j.ecoenv.2007.03.013.
- Liu, G., Y. Qian, S. Dai et N. Feng, 2008. Adsorption of microcystin LR and LW on suspended particulate matter (SPM) at different pH. Water, Air, and Soil Pollution, 192 : 67-76. https://doi.org/10.1007/s11270-008-9635-x.
- López-Rodas, V., A. Flores-Moya, E. Maneiro, N. Perdigones, F. Marva, M.E. García et E. Costas, 2007. Resistance to glyphosate in the cyanobacterium Microcystis aeruginosa as result of pre-selective mutations. Evolutionary Ecology, 21 : 535-547. https://doi.org/10.1007/s10682-006-9134-8.
- Maghsoudi, E., N. Fortin, C. Greer, S.V. Duy, P. Fayad, S. Sauvé, M. Prévost, S. Dorner, 2015a. Biodegradation of multiple microcystins and cylindrospermopsin in clarifier sludge and a drinking water source: Effects of particulate attached bacteria and phycocyanin. Ecotoxicology and Environmental Safety, 120 : 409-417. https://doi.org/10.1016/j.ecoenv.2015.06.001.
- Maghsoudi, E., M. Prévost, S. VoDuy, S. Sauvé et S. Dorner, 2015b. Adsorption characteristics of multiple microcystins and cylindrospermopsin on sediment: Implications for toxin monitoring and drinking water treatment. Toxicon, 103 : 48-54. https://doi.org/10.1016/j.toxicon.2015.06.007.
- Maghsoudi, E., N. Fortin, C. Greer, C. Maynard, A. Pagé, S.V. Duy, S. Sauvé et S. Dorner, 2016. Cyanotoxin degradation activity and: Mlr gene expression profiles of a Sphingopyxis sp. isolated from Lake Champlain, Canada. Environmental Science: Processes and Impacts, 18 : 1417-1426. https://doi.org/10.1039/c6em00001k.
- Mantzouki, E., M. Lürling, J. Fastner et 192 auteurs, 2018. Temperature effects explain continental scale distribution of cyanobacterial toxins. Toxins, 10 : 1-24. https://doi.org/10.3390/toxins10040156.
- Martínez-Ruiz, E.B. et F. Martínez-Jerónimo, 2016. How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis aeruginosa exposed to nickel stress. Ecotoxicology and Environmental Safety, 133 : 36-46. https://doi.org/10.1016/j.ecoenv.2016.06.040.
- [MDDEFP] Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs, 2014. Bilan de la gestion des épisodes de fleurs d'eau d'algues bleu-vert au Québec, de 2007 à 2012. Direction du suivi de l’état de l’environnement, Québec, 32 p. Disponible en ligne à : http://www.environnement.gouv.qc.ca/eau/algues-bv/bilan/Bilan_ABV_2007-2012.pdf.
- [MELCC] Ministère de l'Environnement et de la Lutte contre les changements climatiques, 2018. Liste des plans d'eau touchés par une fleur d'eau d'algues bleu-vert de 2004 à 2017 et des plans d'eau récurrents signalés de 2013 à 2015. Québec, 32 p. Disponible en ligne à : http://www.environnement.gouv.qc.ca/eau/algues-bv/bilan/Liste-plans-eau-touches-abv.pdf.
- Meriluoto, J.A.O. et L.E.M. Spoof, 2008. Cyanotoxins: sampling, sample processing and toxin uptake. Advances in Experimental Medicine and Biology, 619 : 483-499. https://doi.org/10.1007/978-0-387-75865-7_21.
- Meriluoto, J., L. Spoof et G.A. Codd, 2017. Handbook of cyanobacterial monitoring and cyanotoxin analysis. John Wiley & Sons, édition illustrée, West Sussex, 576 p.
- Monchamp, M-E., F.R. Pick, B.E. Beisner et R. Maranger, 2014. Nitrogen forms influence microcystin concentration and composition via changes in cyanobacterial community structure. PLoS ONE, 9 : e85573. https://doi.org/10.1371/journal.pone.0085573.
- Ndlela, L.L., P.J. Oberholster, J.H. VanWyk et P.H. Cheng, 2019. A laboratory based exposure of Microcystis and Oscillatoria cyanobacterial isolates to heterotrophic bacteria. Toxicon, 165 : 1-12. https://doi.org/10.1016/j.toxicon.2019.04.002.
- Neilan, B.A., L.A. Pearson, J. Muenchhoff, M.C. Moffitt et E. Dittmann, 2013. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environmental Microbiology, 15 : 1239-1253. https://doi.org/10.1111/j.1462-2920.2012.02729.x.
- [NEIWPCC] New England Interstate Water Pollution Control Commision, Lake Champlain Basin Program et Organisme de bassin versant de la Baie Missisquoi, 2019. Apports de nutriments et ses impacts sur le lac Champlain, la baie Missisquoi et la rivière Richelieu. Commission mixte internationale, 90 p. Disponible en ligne à : https://www.ijc.org/sites/default/files/2019-11/20191114_Missisquoi_BayLit_Review_LCBP_OBVBM_FR.pdf.
- [NOAA] National Oceanic and Atmospheric Administration, National Ocean Service Education, 2020. Estuaries. NOAA's National Ocean Service Education. Disponible en ligne à : https://oceanservice.noaa.gov/education/kits/estuaries/estuaries01_whatis.html. [Visité le 2020-01-29].
- Oh, H.M., S.J. Lee, M.H. Jang et B.D.Yoon, 2000. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Applied and Environmental Microbiology, 66 : 176-179. https://doi.org/10.1128/AEM.66.1.176-179.2000.
- Paerl, H.W. et T.G. Otten, 2013. Blooms bite the hand that feeds them. Science, 342 : 433-434. https://doi.org/10.1126/science.1245276.
- Pavlova, V., S. Furnadzhieva, J. Rose, R. Andreeva, Z. Bratanova et A. Nayak, 2010. Effect of temperature and light intensity on the growth, chlorophyll a concentration and microcystin production by Microcystis aeruginosa. General and Applied Plant Physiology, 36 : 148-158.
- Pearson, L., T. Mihali, M. Moffitt, R. Kellmann et B. Neilan, 2010. On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Marine Drugs, 8 : 1650-1680. https://doi.org/10.3390/md8051650.
- Phelan, R.R. et T.G. Downing, 2011. A growth advantage for microcystin production by Microcystis PCC7806 under high light. Journal of Phycology, 47 : 1241-1246. https://doi.org/10.1111/j.1529-8817.2011.01056.x.
- Pick, F., 2016. Blooming algae: A Canadian perspective on the rise of toxic cyanobacteria. Canadian Journal of Fisheries and Aquatic Sciences, 73 : 1149-1158. https://doi.org/10.1139/cjfas-2015-0470.
- Pineda-Mendoza, R.M., G. Zúñigaet F. Martínez-Jerónimo, 2016. Microcystin production in Microcystis aeruginosa: effect of type of strain, environmental factors, nutrient concentrations, and N:P ratio on mcyA gene expression. Aquatic Ecology, 50 : 103-119. https://doi.org/10.1007/s10452-015-9559-7.
- Polyak, Y., T. Zaytseva et N. Medvedeva, 2013. Response of toxic cyanobacterium Microcystis aeruginosa to environmental pollution. Water, Air, and Soil Pollution, 224 : 1494-1508. https://doi.org/10.1007/s11270-013-1494-4.
- Preussel, K., G. Wessel, J. Fastner et I. Chorus, 2009. Response of cylindrospermopsin production and release in Aphanizomenon flos-aquae (Cyanobacteria) to varying light and temperature conditions. Harmful Algae, 8 : 645-650. https://doi.org/10.1016/j.hal.2008.10.009.
- Prosen, H. et L. Zupančič-Kralj, 2005. Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids. Environmental Pollution, 133 : 517-529. https://doi.org/10.1016/j.envpol.2004.06.015.
- Rapala, J. et K. Sivonen, 1998. Assessment of environmental conditions that favor hepatotoxic and neurotoxic Anabaena spp. strains cultured under light limitation at different temperatures. Microbial Ecology, 36 : 181-192. https://doi.org/10.1007/s002489900105.
- Rapala, J., K. Lahti, K. Sivonen et S.I. Niemelä, 1994. Biodegrability and adsorption on lake sediments of cyanobacterial hepatotoxins and anatoxin-a. Letters in Applied Microbiology, 19 : 423-428. https://doi.org/10.1111/j.1472-765x.1994.tb00972.x.
- Rapala, J., K. Sivonen, K., C. Lyra et S.I. Niemelä, 1997. Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Applied and Environmental Microbiology, 63 : 2206-2212. https://doi.org/10.1128/AEM.63.6.2206-2212.1997.
- Rivasseau, C., S. Martins et M.C. Hennion, 1998. Determination of some physicochemical parameters of microcystins (cyanobacterial toxins) and trace level analysis in environmental samples using liquid chromatography. Journal of Chromatography A, 799 : 155-169. https://doi.org/10.1016/S0021-9673(97)01095-9.
- Saito, K., Y. Sei, S. Miki et K. Yamaguchi, 2008. Detection of microcystin-metal complexes by using cryospray ionization-Fourier transform ion cyclotron resonance mass spectrometry. Toxicon, 51 : 1496-1498. https://doi.org/10.1016/j.toxicon.2008.03.026.
- Santé Canada, 2017. Recommandations pour la qualité de l’eau potable au Canada : document technique — Les toxines cyanobactériennes. Bureau de la qualité de l’eau et de l’air, Direction générale de la santé environnementale et de la sécurité des consommateurs, Santé Canada, Ottawa, 220 p. (N° de catalogue H144-38/2017F-PDF). Disponible en ligne à : https://www.canada.ca/content/dam/canada/health-canada/migration/healthy-canadians/publications/healthy-living-vie-saine/water-cyanobacteria-cyanobacterie-eau/alt/water-cyanobacteria-cyanobacterie-eau-fra.pdf.
- Sevilla, E., B. Martin-Luna, L. Vela, M.T. Bes, M.F. Fillat et M.L. Peleato, 2008. Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environmental Microbiology, 10 : 2476-2483. https://doi.org/10.1111/j.1462-2920.2008.01663.x.
- Silveira, S.B. et C. Odebrecht, 2019. Effects of salinity and temperature on the growth, toxin production, and akinete germination of the cyanobacterium Nodularia spumigena. Frontiers in Marine Science, 6 : 1-12. https://doi.org/10.3389/fmars.2019.00339.
- Sivonen K., 1990. Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Applied and Environmental Microbiology, 56 : 2658:2666.
- Song, W., S. Bardowell et K.E. O’Shea, 2007. Mechanistic study and the influence of oxygen on the photosensitized transformations of microcystins (cyanotoxins). Environmental Science and Technology, 41 : 5336-5341. https://doi.org/10.1021/es063066o.
- Souza, M.S. de, J.H. Muelbert, L.D.F. Costa, E.V.Klering et J.S. Yunes, 2018. Environmental variability and cyanobacterial blooms in a subtropical coastal lagoon: Searching for a sign of climate change effects. Frontiers in Microbiology, 9 : 1-10. https://doi.org/10.3389/fmicb.2018.01727.
- Stucken, K., U. John, A. Cembella, K. Soto-Liebe et M. Vásquez, 2014. Impact of nitrogen sources on gene expression and toxin production in the diazotroph Cylindrospermopsisraciborskii CS-505 and non-diazotroph Raphidiopsis brookii D9. Toxins, 6 : 1896-1915. https://doi.org/10.3390/toxins6061896.
- Svrcek, C. et D.W. Smith, 2004. Cyanobacteria toxins and the current state of knowledge on water treatment options: A review. Journal of Environmental Engineering and Science, 3 : 155-185. https://doi.org/10.1139/S04-010.
- Taranu, Z.E., I. Gregory-Eaves, R.J. Steele, M. Beaulieu et P. Legendre, 2017. Predicting microcystin concentrations in lakes and reservoirs at a continental scale: A new framework for modelling an important health risk factor. Global Ecology and Biogeography, 26 : 625-637. https://doi.org/10.1111/geb.12569.
- Taranu, Z.E., F.R. Pick, I.F. Creed, A. Zastepa et S.B. Watson, 2019. Meteorological and nutrient conditions influence microcystin congeners in freshwaters. Toxins, 11 : 1-21. https://doi.org/10.3390/toxins11110620.
- Thirumavalavan, M., Y.L. Hu et J.F. Lee, 2012. Effects of humic acid and suspended soils on adsorption and photo-degradation of microcystin-LR onto samples from Taiwan reservoirs and rivers. Journal of Hazardous Materials, 217-218 : 323-329. https://doi.org/10.1016/j.jhazmat.2012.03.031.
- Tonk, L., K. Bosch, P.M. Visser et J. Huisman, 2007. Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquatic Microbial Ecology, 46 : 117-123. https://doi.org/10.3354/ame046117.
- Toruńska-Sitarz, A., E. Kotlarska et H. Mazur-Marzec, 2018. Biodegradation of nodularin and other nonribosomal peptides by the Baltic bacteria. International Biodeterioration and Biodegradation, 134 : 48-57. https://doi.org/10.1016/j.ibiod.2018.08.004.
- Utkilen, H. et N. Gjolme, 1995. Iron-stimulated toxin production in Microcystis aeruginosa. Applied and Environmental Microbiology, 61 : 797-800.
- Walls, J.T., K.H. Wyatt, J.C. Doll, E.M. Rubenstein et A.R. Rober, 2018. Hot and toxic: Temperature regulates microcystin release from cyanobacteria. Science of the Total Environment, 610-611 : 786-795. https://doi.org/10.1016/j.scitotenv.2017.08.149.
- Wang, X., P. Parkpian, N. Fujimoto, K.M. Ruchirawat, R.D. DeLaune et A. Jugsujinda, 2002, Environmental conditions associating microcystins production to Microcystis aeruginosa in a reservoir of Thailand. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 37 : 1181-1207. https://doi.org/10.1081/ESE-120005980.
- Wang, H., Z. Zhang, D.Liang, H. Du, Y. Pang, K. Hu et J. Wang, 2016. Separation of wind's influence on harmful cyanobacterial blooms. Water Research, 98 : 280-292. https://doi.org/10.1016/j.watres.2016.04.037.
- Wang, J., L. Zhang, J. Fan et Y. Wen, 2017. Impacts of Rac- and S-metolachlor on cyanobacterial cell integrity and release of microcystins at different nitrogen levels. Chemosphere, 181 : 619-626. https://doi.org/10.1016/j.chemosphere.2017.04.101.
- Watanabe, M.F. et S. Oishi, 1985. Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Applied and Environmental Microbiology, 49 : 1342-1344.
- Wu, X., B. Xiao, R. Li, C. Wang, J. Huang et Z. Wang, 2011. Mechanisms and factors affecting sorption of microcystins onto natural sediments. Environmental Science and Technology, 45 : 2641-2647. https://doi.org/10.1021/es103729m.
- Yeung, A.C.Y., P.M. D’Agostino, A. Poljak, J. McDonald, M.W. Bligh, T.D. Waite et B.A. Neilan, 2016. Physiological and proteomic responses of continuous cultures of Microcystis aeruginosa PCC 7806 to changes in iron bioavailability and growth rate. Applied and Environmental Microbiology, 82 : 5918-5929. https://doi.org/10.1128/AEM.01207-16.
- Zastepa, A., F.R. Pick et J.M. Blais, 2017a. Distribution and flux of microcystin congeners in lake sediments. Lake and Reservoir Management, 33 : 444-451. https://doi.org/10.1080/10402381.2017.1362491.
- Zastepa, A., Z.E. Taranu, L.E. Kimpe, J.M. Blais, I. Gregory-Eaves, R.W. Zurawell et F.R. Pick, 2017b. Reconstructing a long-term record of microcystins from the analysis of lake sediments. Science of the Total Environment, 579 : 893-901. https://doi.org/10.1016/j.scitotenv.2016.10.211.
- Žegura, B., A. Štraser et M. Filipič, 2011. Genotoxicity and potential carcinogenicity of cyanobacterial toxins — a review. Mutation Research — Reviews in Mutation Research, 727 : 16-41. https://doi.org/10.1016/j.mrrev.2011.01.002.
- Zhang, Q., H. Zhou, Z. Li, J. Zhu, C. Zhou et M. Zhao, 2016. Effects of glyphosate at environmentally relevant concentrations on the growth of and microcystin production by Microcystis aeruginosa. Environmental Monitoring and Assessment, 188 : 632-639. https://doi.org/10.1007/s10661-016-5627-2.