Les cellules souches embryonnaires (ES) humaines sont des cellules pluripotentes qui dérivent de la masse cellulaire interne de l’embryon aux stades de morula tardive ou plus communément du blastocyste. En raison de leur origine embryonnaire et de leurs capacités extensives de prolifération et de différenciation, ces cellules offrent l’opportunité unique d’étudier de nombreux aspects de la biologie des cellules souches et de modéliser le développement normal et anormal de l’embryon humain. Partageant une communauté de propriétés avec les lignées de carcinomes embryonnaires, dont l’expression de CD30 lors de leur transformation génétique [1], elles représentent un modèle également exploitable dans l’étude de la cancérogenèse. Une raison encore plus pressante à leur exploitation dans ce domaine se fonde sur la théorie de la « cellule souche cancéreuse », selon laquelle les cellules souches seraient à l’origine de l’émergence et de la récurrence d’une variété de cancers. Ces atouts sont renforcés par l’existence de différences notables entre la biologie des cellules ES humaines et murines (Tableau I). Outre des différences de morphologie, taux de croissance et expression d’antigènes embryonnaires, la propagation sous forme indifférenciée des cellules ES murines, en l’absence de cellules nourricières et de sérum, peut être prise en charge par une combinaison de LIF (leukemia inhibitory factor) et de BMP (bone morphogenetic protein). Dans le cas des cellules ES humaines, le remplacement des cellules nourricières par des concentrations supra-physiologiques de bFGF (fibroblast growth factor) ne s’affranchit pas de l’apport d’une matrice extracellulaire riche en molécules régulatrices diverses (laminine, collagène, entactine, TGFβ - transforming growth factor β -, activine) suggérant la complexité des mécanismes cellulaires et moléculaires régulant le caractère « souche » de ces cellules. De plus, à l’inverse de la situation qui prévaut chez la souris, la signalisation via les BMP induit la différenciation des cellules ES humaines vers des dérivés du trophoblaste [2] ou de l’endoderme primitif [3], démontrant une capacité de développement supérieure du blastocyste humain ou un stade de développement plus précoce de la cellule ES humaine. Contrairement à la relative facilité de clonage et de modification génétique des cellules ES murines, la propagation des ES humaines ne peut s’effectuer par dissociation individuelle des cellules sans causer des taux inacceptables de mortalité et de différenciation cellulaire, voire une occurrence plus fréquente d’anomalies chromosomiques [4, 5]. Le tri cellulaire par cytométrie de flux présente des inconvénients similaires. Ces limitations compromettent la capacité d’expansion des cellules ES humaines ainsi que l’application de protocoles de sélection génétique qui restent à ce jour relativement peu efficaces, comparés aux résultats dans le système murin. Dans l’état actuel de nos connaissances, l’expression de SSEA-3 (stage-specific embryonic antigen, un antigène glycosylé) reflète l’état le plus primitif des cellules ES humaines, corrélant avec une expression accrue des gènes de pluripotence Oct3/4 et Nanog ((→) m/s 2006, n° 10 (sous presse)) et une plus grande clonogénicité [6]. Le groupe de P.J. Donovan [7] a récemment montré que l’addition de neurotrophines augmente considérablement la survie clonale de ces cellules (27-30 %), rendant attractive l’introduction en routine de ces facteurs dans les milieux de culture de ces cellules. Placées dans des conditions de culture analogues à celles qui sont utilisées pour les cellules ES murines, les cellules ES humaines ont la capacité de se différencier en des cellules spécialisées représentant des dérivés de l’ectoderme, du mésoderme et plus difficilement, par manque de marqueurs spécifiques, de l’endoderme. Comme chez la souris, la grande majorité des méthodologies de différenciation utilise l’agrégation des cellules en corps embryonnaires (EB) et leur traitement par des molécules régulatrices. Une cohorte de publications de …
Appendices
Références
- 1. Herszfeld D, Wolvetang E, Langton-Bunker E, et al. CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat Biotechnol 2006 ; 24 : 351-7.
- 2. Xu RH, Chen X, Li DS, et al. BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 2002 ; 20 :1261-4.
- 3. Pera MF, Andrade J, Houssami S, et al. Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 2004 ; 117 : 1269-80.
- 4. Draper JS, Smith K, Gokhale P, et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 2004 ; 22 : 53-4.
- 5. Brimble SN, Zeng X, Weiler DA, et al. Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev 2004 ; 13 : 585-97.
- 6. Enver T, Soneji S, Joshi C, et al. Cellular differentiation hierarchies in normal and culture-adapted human embryonic stem cells. Hum Mol Genet 2005 ; 14 : 3129-40.
- 7. Pyle AD, Lock LF, Donovan PJ. Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol 2006 ; 24 : 344-50.
- 8. Chadwick K, Wang L, Li L, et al. Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 2003 ; 102 : 906-15.
- 9. Cerdan C, Rouleau A, Bhatia M. VEGF-A165 augments erythropoietic development from human embryonic stem cells. Blood 2004 ; 103 : 2504-12.
- 10. Wang L, Li L, Shojaei F, et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 2004 ; 21 : 31-41.
- 11. Wang L, Menendez P, Shojaei F, et al. Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med 2005 ; 201 : 1603-14.
- 12. Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 2002 ; 109 : 29-37.
- 13. Tian X, Woll PS, Morris JK, Linehan JL, Kaufman DS. Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity. Stem Cells 2006 ; 24 : 1370-80.
- 14. Narayan AD, Chase JL, Lewis RL, et al. Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood 2006 ; 107 : 2180-3.
- 15. Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006 ; 24 : 185-7.