Abstracts
Résumé
L’évolution du cerveau humain suscite l’intérêt des scientifiques depuis longtemps. Ainsi l’augmentation de la taille du cerveau au cours de la période de modernisation pré-humaine a été associée à l’apparition d’aptitudes remarquables comme la capacité à fabriquer des outils, la bipédie, la chasse et le raffinement de l’interaction sociale, les talents artistiques et le développement du langage. Bien entendu, avec la taille c’est aussi la croissance de certaines parties du cerveau (notamment le cortex) qui entrent en jeu. Quel a été l’élément déterminant de cette évolution ? Il semble bien qu’aujourd’hui comme naguère (il y a cinq ou six millions d’années), l’apport nutritif constitue un facteur clé. La disponibilité et l’ingestion d’aliments riches en acides gras fournissent une suite d’éléments explicatifs susceptibles d’étayer une théorie selon laquelle les individus les plus adipeux (fattest) se seraient les mieux adaptés (fittest). En somme, l’environnement aurait eu un effet sur les capacités de survie de certains individus par rapport à d’autres.
Summary
The circumstances of human brain evolution are of central importance to accounting for human origins, yet are still poorly understood. Human evolution is usually portrayed as having occurred in a hot, dry climate in East Africa where the earliest human ancestors became bipedal and evolved tool-making skills and language while struggling to survive in a wooded or savannah environment. At least three points need to be recognised when constructing concepts of human brain evolution : (1) The human brain cannot develop normally without a reliable supply of several nutrients, notably docosahexaenoic acid, iodine and iron. (2) At term, the human fetus has about 13 % of body weight as fat, a key form of energy insurance supporting brain development that is not found in other primates. (3) The genome of humans and chimpanzees is <1 % different, so if they both evolved in essentially the same habitat, how did the human brain become so much larger, and how was its present-day nutritional vulnerability circumvented during 5-6 million years of hominid evolution ? The abundant presence of fish bones and shellfish remains in many African hominid fossil sites dating to 2 million years ago implies human ancestors commonly inhabited the shores, but this point is usually overlooked in conceptualizing how the human brain evolved. Shellfish, fish and shore-based animals and plants are the richest dietary sources of the key nutrients needed by the brain. Whether on the shores of lakes, marshes, rivers or the sea, the consumption of most shore-based foods requires no specialized skills or tools. The presence of key brain nutrients and a rich energy supply in shore-based foods would have provided the essential metabolic and nutritional support needed to gradually expand the hominid brain. Abundant availability of these foods also provided the time needed to develop and refine proto-human attributes that subsequently formed the basis of language, culture, tool making and hunting. The presence of body fat in human babies appears to be the product of a long period of sedentary, shore-based existence by the line of hominids destined to become humans, and became the unique solution to insuring a back-up fuel supply for the expanding hominid brain. Hence, survival of the fattest (babies) was the key to human brain evolution.
Appendices
Références
- 1. Tattersall I. Becoming human: evolution and human uniqueness. New York : Harcourt, Brace and Company, 1998.
- 2. Aeillo LC, Dean C. Introduction to human evolutionary anatomy. New York : Academic, 1990.
- 3. Conroy GC. Reconstructing human origins: a modern synthesis. New York : WW Norton, 1997.
- 4. Falk D. Hominid brain evolution. Looks can be deceiving. Science 1998 ; 280 : 1714.
- 5. Jerison H. Evolution of the human brain and intelligence. London : Academic Press, 1973.
- 6. Johanson D, Edey M. Lucy: the beginnings of mankind. New York : Touchstone Books, 1981.
- 7. Leakey R. The origin of humankind. New York : Basic Books, 1994.
- 8. Changeux JP, Chavaillon J. Origins of the human brain. Oxford : Clarendon Press, 1995.
- 9. Coppens Y, Glaize P. Homo sapiens. Paris : Flammarion, 2004.
- 10. Holliday M. Metabolic rate and organ size during growth from infancy to maturity and during late gestation and early infancy. Pediatrics 1971 ; 47 : 169-72.
- 11. Armstrong E. Relative brain size and metabolism in mammals. Science 1983 ; 230 : 1302-4.
- 12. Martin RD. Relative brain size and basal metabolic rate in terrestrial vertebrates. Nature 1981 ; 293 : 57-60.
- 13. Widdowson EM. Changes in body proportion and composition with growth. In : Davies JA, Dobbing J, eds. Scientific foundations of pediatrics. London : Heinemann, 1974 : 153-63.
- 14. Harrington TA, Thomas EL, Modi N, et al. Fast and reproducible method for the direct quantitation of adipose tissue in newborn infants. Lipids 2002 ; 37 : 95-100.
- 15. Battaglia FC, Thureen PJ. Nutrition of the fetus and premature infant. Nutrition 1991 ; 13 : 903-6.
- 16. Cunnane SC, Crawford MA. Survival of the fattest. Fat babies were the key to evolution of the large human brain. Comp Biochem Physiol 2003 ; 136A : 17-26.
- 17. Crawford MA, Costeloe K, Ghebremeskel K, et al. Are deficits of arachidonic and docosahexaenoic acids responsible for the neural and vascular complications of preterm babies ? Am J Clin Nutr 1997 ; 66 (suppl) : S1032-41.
- 18. Hack M, Breslau N, Weissman B, et al. Effect of very low birth weight and subnormal head size on cognitive abilities at school age. N Engl J Med 1991 ; 325 : 231-7.
- 19. Adam PAJ, Raiha N, Rahiala EL, Kekomaki EL. Oxidation of glucose and D-Beta-hydroxybuyrate by the early human fetal brain. Acta Paediatr Scand 1975 ; 64 : 17-24.
- 20. Pardridge WM. Blood-brain barrier transport of glucose, free fatty acids, and ketone bodies. In : Vranic M, Efendic S, Hollenberg C, eds. Fuel homeostasis and the nervous system. New York : Plenum Press, 1991 : 43-53.
- 21. Sokoloff L. Measurement of local cerebral glucose utilization and its relation to local functional activity in the brain. In : Vranic M, Efendic S, Hollenberg C, eds. Fuel homeostasis and the nervous system. New York : Plenum Press, 1991 : 21-42.
- 22. Kety SS. The general metabolism of the brain in vivo. In : Richter D, ed. Metabolism of the nervous system. London ; Pergamon, 1957 : 221-36.
- 23. Edmond J. Ketone bodies as precursors of sterols and fatty acids in the developing rat. J Biol Chem 1974 ; 249 : 72-80.
- 24. Patel MS, Owen OE. Development and regulation of lipid synthesis from ketone bodies by rat brain. J Neurochem 1977 ; 28 : 109-14.
- 25. Cunnane SC, Francescutti V, Brenna JT, Crawford MA. Breast-fed infants achieve a higher rate of brain and whole body docosahexaenoate accumulation than formula-fed infants not consuming dietary docosahexaenoate. Lipids 2000 ; 35 : 105-11.
- 26. Broadhurst CL, Wang Y, Crawford MA, et al. Brain-specific lipids from marine, lacustrine or terrestrial food resources ; potential impact on early African Homo sapiens( part B). Comp Biochem Physiol, 2002 ; 131 : 653-73.
- 27. Stewart KM. Early hominid utilisation of fish resources and implications for seasonality and behaviour. J Human Evol 1994 ; 27 : 229-45.
- 28. Stewart K. A report on the fish remains from Beds I and II sites, Olduvai Gorge, Tanzania. Darmst Beitrag Naturgesch 1996 ; 6 : 263-9.
- 29. Walter RC, Buffler RT, Bruggemann JH, et al. Early human occupation of the red sea coast of Eritrea during the last interglacial. Nature 2000 ; 405 : 65-9.
- 30. Ellis DV. Wetlands or aquatic ape ? Availability of food resources. Nutr Health 1993 ; 9: 205-17.
- 31. Kappelman J. The evolution of body mass and relative brain size in fossil hominids. J Human Evol 1997 ; 30 : 243-76.
- 32. Leonard WR, Robertson ML, Snodgrass JJ, Kuzawa CW. Metabolic correlates of human evolution. Comp Biochem Physiol 2003 ; 136A : 5-16.
- 33. Ruff CB, Trinkaus E, Holiday TW. Body mass and encephalization in Pleistocene. Homo Nature 1997 ; 387 : 173-6.