Abstracts
Résumé
La membrane amniotique, enclave interne de la vie naissante, présente diverses propriétés exploitées en ophtalmologie. Elle est utile pour : (1) limiter la formation d’adhésions fibreuses entre la paupière et le globe oculaire (symblépharon) ou la progression d’excroissances fibrovasculaires vers la cornée (ptérygion) ; (2) contribuer à la guérison d’ulcères cornéens, de kératites bulleuses et des déficiences en cellules souches de la cornée dues à des brûlures thermiques, chimiques ou d’autre origine. L’amnios, alors greffé avec des cellules limbiques saines, favoriserait la prolifération de cellules moins différenciées, aptes à reconstruire l’épithélium cornéen. La membrane amniotique contient des cytokines, réduit l’acuité des réactions immunologiques et possède des propriétés antalgiques, anti-bactériennes et anti-inflammatoires ; de plus, elle favorise, comme le fait la peau foetale, une guérison avec un minimum de cicatrices. La connaissance des mécanismes d’action de la membrane amniotique obtenue grâce à la recherche pourrait fournir de nouvelles avenues pharmacologiques afin de traiter des maladies de la surface oculaire.
Summary
The amniotic membrane, the most internal placental membrane, has various properties useful in ophthalmology. Collected on delivery by elective Caesarean section, the amnion is prepared under sterile conditions, and, usually, cryopreserved until its use as a biological bandage or as a substrate for epithelial growth in the management of various ocular surface conditions. Specifically, the amnion is used to : (1) limit formation of adhesive bands between eyelids and eyeball (symblepharon) or the progression of a fibrovascular outgrowth towards the cornea (pterygium) or to (2) facilitate the healing of corneal ulcers, bullous keratopathy, and corneal stem cell deficiency. In this last condition, either hereditary or acquired after a thermal or a chemical burn, corneal stem cells, located at a transitional zone between the cornea and conjunctiva, are lost. These cells are essential for renewal of corneal epithelium in normal and in diseased states. The loss of these cells leaves the corneal surface free for invasion by conjunctival epithelium. Not only, does conjunctival epithelium support the development of vascularisation on the normally avascular cornea, but some conjunctival cells differentiate into mucus secreting goblet cells. Such a change in phenotype leads to loss of corneal transparency and visual disability. The removal of this fibro-vascular outgrowth in combination with transplantation of both amniotic membrane and corneal stem cells are used to treat this condition. The amnion stimulates the proliferation of less differentiated cells which have the potential to reconstruct the cornea. This potential is at the origin of the hypothesis that the amnion may provide an alternative niche for limbal stem cells of the corneal epithelium. It abounds in cytokines and has antalgic, anti-bacterial, anti-inflammatory and anti-immunogenic properties, in addition to allowing, like fetal skin does, wound healing with minimal scar formation. These desirable properties are responsible for the increasing use of amniotic membrane in ophthalmology. The complete understanding of the mechanisms of action of amniotic membrane for ocular surface diseases has yet to be understood. Once revealed by research, they may provide new pharmacological avenues to treat ocular surface diseases.
Appendices
Références
- 1. Dua HS, Gomes JA, King AJ, Maharajan VS. The amniotic membrane in ophthalmology. Surv Ophthalmol 2004 ; 49 : 51-77.
- 2. Bouchard CS, John T. Amniotic membrane transplantation in the management of severe ocular surface disease : indications and outcomes. The Ocular Surface 2004 ; 2 : 201-11.
- 3. John T. Human amniotic membrane transplantation : past, present, and future. Ophthalmol Clin North Am 2003 ; 16 : 43-65.
- 4. Dua HS, Joseph A, Shanmuganathan VA, Jones RE. Stem cell differentiation and the effects of deficiency. Eye 2003 ; 17 : 877-85.
- 5. Kim HS, Jun Song X, de Paiva CS, et al. Phenotypic characterization of human corneal epithelial cells expanded ex vivo from limbal explant and single cell cultures. Exp Eye Res 2004 ; 79 : 41-9.
- 6. Lindberg K, Brown ME, Chaves HV, et al. In vitro propagation of human ocular surface epithelial cells for transplantation. Invest Ophthalmol Vis Sci 1993 ; 34 : 2672-9.
- 7. Di Iorio E, Barbaro V, Ruzza A, et al. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci USA 2005 ; 102 : 9523-8.
- 8. Wolosin JM, Budak MT, Akinci MA. Ocular surface epithelial and stem cell development. Int J Dev Biol 2004 ; 48 : 981-91.
- 9. Tseng SC, Prabhasawat P, Barton K, et al. Amniotic membrane transplantation with or without limbal allografts for corneal surface reconstruction in patients with limbal stem cell deficiency. Arch Ophthalmol 1998 ; 116 : 431-41.
- 10. Hernandez Galindo EE, Theiss C, Steuhl KP, Meller D. Expression of Delta Np63 in response to phorbol ester in human limbal epithelial cells expanded on intact human amniotic membrane. Invest Ophthalmol Vis Sci 2003 ; 44 : 2959-65.
- 11. Du Y, Chen J, Funderburgh JL, et al. Functional reconstruction of rabbit corneal epithelium by human limbal cells cultured on amniotic membrane. Mol Vis 2003 ; 9 : 635-43.
- 12. Sangwan VS, Vemuganti GK, Singh S, Balasubramanian D. Successful reconstruction of damaged ocular outer surface in humans using limbal and conjuctival stem cell culture methods. Biosci Rep 2003 ; 23 : 169-74.
- 13. Baum J. Thygeson lecture. Amniotic membrane transplantation : why is it effective? Cornea 2002 ; 21 : 339-41.
- 14. Koizumi N, Inatomi TJ, Sotozono C, et al. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 2000 ; 20 : 173-7.
- 15. Touhami A, Grueterich M, Tseng SC. The role of NGF signaling in human limbal epithelium expanded by amniotic membrane culture. Invest Ophthalmol Vis Sci 2002 ; 43 : 987-94.
- 16. Solomon A, Rosenblatt M, Monroy D, et al. Suppression of interleukin 1alpha and interleukin 1beta in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br J Ophthalmol 2001 ; 85 : 444-9.
- 17. Tseng SC, Espana EM, Kawakita T, et al. How does amniotic membrane work? The Ocular Surface 2004 ; 2 : 177-87.
- 18. Park WC, Tseng SC. Modulation of acute inflammation and keratocyte death by suturing, blood, and amniotic membrane in PRK. Invest Ophthalmol Vis Sci 2000 ; 41 : 2906-14.
- 19. Moulin V, Tam BY, Castilloux G, et al. Fetal and adult human skin fibroblasts display intrinsic differences in contractile capacity. J Cell Physiol 2001 ; 188 : 211-22.
- 20. Lee SB, Li DQ, Tan DT, et al. Suppression of TGF-beta signaling in both normal conjunctival fibroblasts and pterygial body fibroblasts by amniotic membrane. Curr Eye Res 2000 ; 20 : 325-34.
- 21. Gris O, Wolley-Dod C, Guell JL, et al. Histologic findings after amniotic membrane graft in the human cornea. Ophthalmology 2002 ; 109 : 508-12.
- 22. Koizumi N, Inatomi T, Quantock AJ, et al. Amniotic membrane as a substrate for cultivating limbal corneal epithelial cells for autologous transplantation in rabbits. Cornea 2000 ; 19 : 65-71.
- 23. Gris O, Campo Z, Wolley-Dod C, et al. Amniotic membrane implantation as a therapeutic contact lens for the treatment of epithelial disorders. Cornea 2002 ; 21 : 22-7.
- 24. Muraine M, Descargues G, Franck O, et al. La greffe de membrane amniotique dans les pathologies oculaires de surface. Étude prospective à partir de 31 cas. J Fr Ophtalmol 2001 ; 24 : 798-812.
- 25. Tseng SC. Amniotic membrane transplantation for ocular surface reconstruction. Biosci Rep 2001 ; 21 : 481-9.
- 26. Germain L, Giasson CJ, Carrier P, et al. Tissue engineering of cornea. In : Wnek GE, Bowlin GL, eds. Encyclopedia of biomaterials and biomedical engineering. New York : Marcel Dekker, 2004 : 1534-44.
- 27. Nakamura T, Nishida K, Dota A, et al. Elevated expression of transglutaminase 1 and keratinization-related proteins in conjunctiva in severe ocular surface disease. Invest Ophthalmol Vis Sci 2001 ; 42 : 549-56.
- 28. Deschambeault A, Carrier P, Talbot M, Germain L. In vitro Characterization of human limbal epithelial cells isolated from the four quadrants. ARVO Meeting Abstracts 2003 ; 44 : 1357.
- 29. Lavker RM, Tseng SC, Sun TT. Corneal epithelial stem cells at the limbus : looking at some old problems from a new angle. Exp Eye Res 2004 ; 78 : 433-46.
- 30. Sakoonwatanyoo P, Tan DT, Smith DR. Expression of p63 in pterygium and normal conjunctiva. Cornea 2004 ; 23 : 67-70.
- 31. Abu El-Asrar AM, Al-Mansouri S, Tabbara KF, et al. Immunopathogenesis of conjunctival remodelling in vernal keratoconjunctivitis. Eye 2006 ; 20 : 71-9.