Abstracts
Résumé
La découverte de cellules souches au coeur du cerveau adulte bouleversa le dogme, central en neurobiologie, selon lequel le cerveau mature est une structure stable qui n’évolue plus. Depuis quelques années, les neurobiologistes constatent que, même parvenu au stade adulte, le cerveau reste encore capable de fabriquer des neurones qui s’intègrent aux réseaux existants. De façon constitutive, deux régions cérébrales (le bulbe olfactif et l’hippocampe) sont capables d’intégrer de nouveaux neurones et de tirer profit de cette jouvence neurale. Les nouveaux neurones sont issus de progéniteurs ayant des propriétés de cellules-souches neurales, et situés dans des régions particulières : la zone sous-ventriculaire pour les progéniteurs bulbaires, et la zone sous-granulaire pour les progéniteurs de l’hippocampe. Nombre de facteurs génétiques et épigénétiques régulant la prolifération des cellules souches, la migration, la différenciation et la survie des nouvelles cellules ont été identifiés et leurs mécanismes d’action élucidés. Cette capacité à produire de nouvelles cellules permet au cerveau adulte de s’adapter aux changements survenant dans son entourage ; en cas de lésion ou de maladie, notamment, elle lui offre une possibilité de pouvoir se réparer. Dans cette synthèse, nous décrirons les différentes étapes par lesquelles une cellule-souche neurale produit des neurones destinés au bulbe olfactif, en insistant sur la façon dont cette production peut être régulée. Cette exploration nous conduira à décrire les résultats récents qui témoignent du potentiel réparateur des progéniteurs endogènes du système olfactif. Ces découvertes ouvrent la voie à de nouvelles stratégies visant à détourner, depuis leur zone germinative, les neurones nouvellement formés dans un cerveau adulte.
Summary
Contrary to the long-held dogma according to which the adult mammalian brain does not produce neurons anymore, neuronal turnover has been reported in two discrete areas of the adult brain: the hippocampus and the olfactory bulb. Adult-generated neurons are produced from neural stem cells located in the hippocampal subgranular zone and the subventricular zone of the lateral ventricles. Recently, number of genetic and epigenetic factors that modulate proliferation of stem cells, migration, differentiation and survival of newborn neurons have been characterized. We know that neurogenesis increases in the diseased brain, after stroke or after traumatic brain injury. Importantly, progenitors from the subventricular zone, but not from the subgranular zone, are incorporated at the sites of injury, where they replace some of the degenerated neurons. Thus, the central nervous system has the capacity to regenerate itself after injury and, today, researchers develop strategies aimed at promoting neurogenesis in diseased areas. This basic research is attracting a lot of attention because of the hope that it will lead to regeneration and reconstruction therapy for the damaged brain. In this review, we discuss major findings concerning the organization of the neurogenic niche located in the subventricular zone and examine both intrinsic and extrinsic factors that regulate adult neurogenesis. Then, we present evidences for the intrinsic capability of the adult brain for cell replacement, and shed light on recent works demonstrating that one can greatly enhance appropriate brain cell replacement by using molecular cues known to endogenously control proliferation, migration, differentiation and/or survival of subventricular zone progenitors. Finally, we review some of the advantages and limits of strategies aimed at using endogenous progenitors and their relevance to human clinics.
Appendices
Références
- 1. Altman J. Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 1969 ; 137 : 433-58.
- 2. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science 1994 ; 264 : 1145-8.
- 3. Kornack DR, Rakic P. The generation, migration, and differentiation of olfactory neurons in the adult primate brain. Proc Natl Acad Sci USA 2001 ; 98 : 4752-7.
- 4. Pencea V, Bingaman KD, Freedman LJ, Luskin MB. Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 2001 ; 172 : 1-16.
- 5. Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998 ; 11 : 1313-7.
- 6. Sanai N, Tramontin AD, Quinones-Hinojosa A, et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 2004 ; 427 : 740-4.
- 7. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 1997 ; 17 : 5046-61.
- 8. Doetsch F, Caille I, Lim DA, et al. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 1999 ; 97 : 703-16.
- 9. Halasz N, Shepherd GM. Neurochemistry of the vertebrate olfactory bulb. Neuroscience 1983 ; 10 : 579-619.
- 10. Rochefort C, Gheusi G, Vincent JD, Lledo PM. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 2002 ; 22 : 2679-89.
- 11. Saghatelyan A, Roux P, Migliore M, et al. Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation. Neuron 2005 ; 46 : 103-16.
- 12. Gage FH. Mammalian neural stem cells. Science 2000 ; 287 : 1433-8.
- 13. Lim DA, Tramontin AD, Trevejo JM, et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 2000 ; 28 : 713-26.
- 14. Hack MA, Saghatelyan A, de Chevigny A, et al. Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 2005 ; 8 : 865-72.
- 15. Lie DC, Song H, Colamarino SA, et al. Neurogenesis in the adult brain: new strategies for central nervous system diseases. Annu Rev Pharmacol Toxicol 2004 ; 44 : 399-421.
- 16. Murase S, Horwitz AF. Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J Neurosci 2002 ; 22 : 3568-79.
- 17. Liu G, Rao Y. Neuronal migration from the forebrain to the olfactory bulb requires a new attractant persistent in the olfactory bulb. J Neurosci 2003 ; 23 : 6651-9.
- 18. Hack I, Bancila M, Loulier K, et al. Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat Neurosci 2002 ; 5 : 939-45.
- 19. Saghatelyan A, de Chevigny A, Schachner M, Lledo PM. Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adultmouse forebrain. Nat Neurosci 2004 ; 7 : 347-56.
- 20. Ng KL, Li JD, Cheng MY, et al. Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science 2005 ; 308 : 1923-7.
- 21. Fiske BK, Brunjes PC. NMDA receptor regulation of cell death in the rat olfactory bulb. J Neurobiol 2001 ; 47 : 223-32.
- 22. Magavi SS, Leavitt BR, Macklis JD. Induction of neurogenesis in the neocortex of adult mice. Nature 2000 ; 405 : 951-5.
- 23. Chen J, Magavi SS, Macklis JD. Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice. Proc Natl Acad Sci USA 2004 ; 101 : 16357-62.
- 24. Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 2002 ; 8 : 963-70.
- 25. Jin K, Mao XO, Sun Y, et al. Stem cell factor stimulates neurogenesis in vitro and in vivo. J Clin Invest 2002 ; 110 : 311-9.
- 26. Fallon J, Reid S, Kinyamu R, et al.In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci USA 2000 ; 97 : 14686-91.
- 27. Cooper O, Isacson O. Intrastriatal transforming growth factor alpha delivery to a model of Parkinson’s disease induces proliferation and migration of endogenous adult neural progenitor cells without differentiation into dopaminergic neurons. J Neurosci 2004 ; 24 : 8924-31.
- 28. Nakatomi H, Kuriu T, Okabe S, et al. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 2002 ; 110 : 429-41.
- 29. Mitchell BD, Emsley JG, Magavi SS, et al. Constitutive and induced neurogenesis in the adult mammalian brain: manipulation of endogenous precursors toward CNS repair. Dev Neurosci 2004 ; 26 : 101-17.
- 30. Picard-Riera N, Nait-Oumesmar B, Baron-Van Evercooren A. Endogenous adult neural stem cells : limits and potential to repair the injured central nervous system. J Neurosci Res 2004 ; 76 : 223-31.