Abstracts
Résumé
La comparaison de séquences d’ADN et de protéines chez les espèces vivantes peut nous renseigner sur la chronologie des différents événements évolutifs qui ont marqué l’histoire de la vie sur terre. En effet, l’hypothèse de l’horloge moléculaire suggère que la vitesse d’accumulation des changements dans les macromolécules biologiques est en moyenne constante sur de longues périodes. Couplée à des calibrations (ou étalonnages) paléontologiques, elle permet donc d’estimer les âges absolus de divergence des espèces. Trois principaux écueils limitent pourtant la fiabilité des datations moléculaires : l’échantillonnage d’un nombre limité d’espèces et de gènes, l’incorporation de calibrations fossiles isolées et ponctuelles, et surtout, l’existence d’hétérogénéités de taux d’évolution entre lignées. Néanmoins, la méthode des horloges moléculaires assouplies appliquée à de riches échantillonnages tant taxonomiques que génomiques a récemment apporté des solutions convaincantes. Elle suggère, par exemple, que l’âge débattu de la diversification des métazoaires bilatériens puisse se situer entre 642-761 millions d’années (Ma), environ 100 Ma avant l’explosion cambrienne, et que celui de la diversification des mammifères placentaires se situe il y environ 100 Ma, bien avant la limite Crétacé/Tertiaire marquant l’extinction des dinosaures.
Summary
The comparison of DNA and protein sequences of extant species might be informative for reconstructing the chronology of evolutionary events on Earth. A phylogenetic tree inferred from molecular data directly depicts the evolutionary affinities of species and indirectly allows estimating the age of their origin and diversification. Molecular dating is achieved by assuming the molecular clock hypothesis, i.e., that the rate of change of nucleotide and amino acid sequences is on average constant over geological time. If paleontological calibrations are available, then absolute divergence times of species can be estimated. However, three major difficulties potentially hamper molecular dating : (1) a limited sample of genes and organisms, (2) a limited number of fossil references, and (3) pervasive variations of molecular evolutionary rates among genomes and species. To circumvent these problems, different solutions have been recently proposed. Larger data sets are built with more genes and more species sampled through the mining of an increasing number of genomes. Moreover, independent key fossils are identified to calibrate molecular clocks, and the uncertainty on their age is integrated in subsequent analyses. Finally, models of molecular rate variations are constructed, and incorporated in the so-called relaxed molecular clock approaches. As an illustration of these improvements, we mention that the debated age of the animal (bilaterian metazoans) diversification may have occurred between 642-761 million years ago (Mya), roughly 100 Ma before the Cambrian explosion. Among mammals, the initial diversification of major placental groups may have taken place around 100 Mya, well before the Cretaceous/Tertiary boundary marking the extinction of dinosaurs.
Appendices
Références
- 1. Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. In : Bryson V, Vogel HJ, eds. Evolving genes and proteins. New York : Academic Press, 1965 : 97-166.
- 2. Sarich VM, Wilson AC. Immunological time scale for hominoid evolution. Science 1967 ; 158 : 1200-3.
- 3. Korber B, Muldoon M, Theiler J, et al. Timing the ancestor of the HIV-1 pandemic strains. Science 2000 ; 288 : 1789-96.
- 4. Conway Morris S. The Cambrian “explosion” : slow-fuse or megatonnage? Proc Natl Acad Sci USA 2000 ; 97 : 4426-9.
- 5. Aris-Brosou S, Yang Z. Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Syst Biol 2002 ; 51 : 703-14.
- 6. Hedges SB, Blair JE, Venturi ML, et al. A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol 2004 ; 4 : 2.
- 7. Peterson KJ, Lyons JB, Nowak KS, et al. Estimating metazoan divergence times with a molecular clock. Proc Natl Acad Sci USA 2004 ; 101 : 6536-41.
- 8. Ayala FJ, Rzhetsky A, Ayala FJ. Origin of the metazoan phyla : molecular clocks confirm paleontological estimates. Proc Natl Acad Sci USA 1998 ; 95 : 606-11.
- 9. Gu X. Early metazoan divergence was about 830 million years ago. J Mol Evol 1998 ; 47 : 369-71.
- 10. Graur D, Martin W. Reading the entrails of chickens : molecular timescales of evolution and the illusion of precision. Trends Genet 2004 ; 20 : 80-6.
- 11. Douzery EJP, Delsuc F, Stanhope MJ, et al. Local molecular clocks in three nuclear genes : divergence times for rodents and other mammals, and incompatibility among fossil calibrations. J Mol Evol 2003 ; 57 : S201-13.
- 12. Philippe H, Sörhannus U, Baroin A, et al. Comparison of molecular and paleontological data in diatoms suggests a major gap in the fossil record. J Evol Biol 1994 ; 7 : 247-65.
- 13. Bromham L, Penny D, Rambaut A, et al. The power of relative rates tests depends on the data. J Mol Evol 2000 ; 50 : 296-301.
- 14. Lecointre G, Philippe H, Lê HLV, et al. Species sampling has a major impact on phylogenetic inference. Mol Phylogenet Evol 1993 ; 2 : 205-24.
- 15. Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 2005 ; 6 : 361-75.
- 16. Sanderson MJ. A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 1997 ; 14 : 1218-31.
- 17. Kishino H, Thorne JL, Bruno WJ. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol 2001 ; 18 : 352-61.
- 18. Yoder AD, Yang Z. Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol 2000 ; 17 : 1081-90.
- 19. Huelsenbeck JP, Larget B, Swofford D. A compound poisson process for relaxing the molecular clock. Genetics 2000 ; 154 : 1879-92.
- 20. Welch JJ, Bromham L. Molecular dating when rates vary. Trends Ecol Evol 2005 ; 20 : 320-7.
- 21. Thorne JL, Kishino H, Painter IS. Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 1998 ; 15 : 1647-57.
- 22. Douzery EJP, Snell EA, Bapteste E, et al. The timing of eukaryotic evolution : Does a relaxed molecular clock reconcile proteins and fossils ? Proc Natl Acad Sci USA 2004 ; 101 : 15386-91.
- 23. Chen JY, Bottjer DJ, Oliveri P, et al. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 2004 ; 305 : 218-22.
- 24. Springer MS, Murphy WJ, Eizirik E, et al. Placental mammal diversification and the Cretaceous-Tertiary boundary. Proc Natl Acad Sci USA 2003 ; 100 : 1056-61.
- 25. Bromham L, Phillips MJ, Penny D. Growing up with dinosaurs : molecular dates and the mammalian radiation. Trends Ecol Evol 1999 ; 14 : 113-8.
- 26. Knapp M, Stöckler K, Havell D, et al. Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (Southern beech). PLoS Biol 2005 ; 3 : e14.