Abstracts
Résumé
La protéine p53 dispose d’une fonction activatrice de l’expression de nombreux gènes cibles. Le rôle de facteur de transcription joué par la protéine p53 nécessite la formation d’une structure homotétramérique. Les résultats de certaines expérimentations montrent que les monomères p53 mutés ont la capacité de se lier à des monomères p53 sauvages pour constituer des complexes hétérotétramériques. La présence de monomères p53 mutés au sein de ces complexes hétérotétramériques peut avoir pour conséquence immédiate une inactivation des monomères sauvages. Cette capacité de liaison et d’inactivation des p53 mutées à l’égard des p53 sauvages est qualifiée d’« effet dominant négatif ». Plusieurs facteurs enrôlés dans cette activité dominante négative ont été identifiés. La compréhension des fonctions moléculaires complexes qui régissent cette activité constitue un des aspects importants qui permettrait de mieux discerner les mécanismes biologiques en jeu dans la cancérogenèse. Le but de cet article est de mettre en lumière des aspects jusqu’à présent occultés de l’activité dominante négative des protéines p53 mutées. De plus, nous allons souligner comment cette activité contribue à la cancérogenèse induite par les rayons ultraviolets.
Summary
Tumor suppressor gene inactivation as proposed by the Knudson model implies a sequential inactivation of two alleles of a gene. For example, the first allele is inactivated by a missense mutation, and the second one is inactivated by a deletion or insertion. The alteration of the p53 tumor suppressor gene is far to correspond only to this model. In the great majority of cancers, the mutated allele of p53 coexists with the normal allele. It is well known that the transcriptional activity is one of the most important functions of p53. The p53 protein is active as a tetramer (this complex activates the expression of targeted genes by binding to its consensus DNA sequence called the p53 response element). Experimental evidence shows that wild-type p53 interacts with mutant proteins to form heterotetramers. In association with wild-type proteins, mutant proteins drive the wild-type subunits into a mutant conformation. This association leads to a loss of trans-activating function. The capacity of mutant subunits to form heterotetramers with wild-type subunits and to commit them into a mutant conformation is called « dominant negative effect ». Many p53 mutant proteins possess this dominant negative activity. Recently, several factors, which are implicated in the control of the dominant negative activity of p53 mutants, have been identified. The elucidation of these complex molecular functions, which are implicated in the dominant negative activity of the p53 mutated protein represents an important aspect in the comprehension of the biological mechanisms involved in carcinogenesis.
Appendices
Références
- 1. Blagosklonny MV. P53 from complexity to simplicity : mutant p53 stabilization, gain-of-function, and dominant-negative effect. FASEB J 2000 ; 14 : 1901-7.
- 2. Sherr CJ, Roberts JM. CDK inhibitors : positive and negative regulators of G1-phase progression. Genes Dev 1999 ; 12 : 1501-12.
- 3. Ziegler A, Jonason AS, Leffell DJ, et al. Sunburn and p53 in the onset of skin cancer. Nature 1994 ; 372 : 773-6.
- 4. Hollstein M, Sidransky D, Vogelstein B, Harris CC. P53 mutations in human cancers. Science 1991 ; 253 : 49-53.
- 5. Hainaut P, Hollstein M. P53 and human cancer : the first ten thousand mutations. Adv Cancer Res 2000 ; 77 : 81-137.
- 6. Cho Y, Gorina S, Jeffrey PD, Pavletich NP. Crystal structure of a p53 tumor suppressor-DNA complex : understanding tumorigenic mutations. Science 1994 ; 265 : 346-55.
- 7. Munger K, Scheffner M, Huibregtse JM, Howley PM. Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer Surv 1992 ; 12 : 197-217.
- 8. Oliner JD, Pietenpol JA, Thiagalingam S, et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor 53. Nature 1993 ; 29 : 857-60.
- 9. Moll UM, Ostermeyer AG, Haladay R, et al. Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol Cell Biol 1996 ; 3 : 1126-37.
- 10. Dittmer D, Pati S, Zambetti G, et al. Gain of function mutations in p53. Nat Genet1993 ; 4 : 42-6.
- 11. Lin J, Teresky AK, Levine AJ. Two critical hydrophobic amino acids in the N-terminal domain of the p53 protein are required for the gain of function phenotypes of human p53 mutants. Oncogene1995 ; 12 : 2387-90.
- 12. Olive KP, Tuveson DA, Ruhe ZC, et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004 ; 119 : 847-60.
- 13. Friedman PN, Chen X, Bargonetti J, Prives C. The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proc Natl Acad Sci USA 1993 ; 90 : 3319-23.
- 14. Brachmann RK, Vidal M, Boeke JD. Dominant-negative p53 mutations selected in yeast hit cancer hot spots. Proc Natl Acad Sci USA 1996 ; 9 : 4091-5.
- 15. Milner J, Medcalf EA. Cotranslation of activated mutant p53 with wild type drives the wild-type p53 protein into the mutant conformation. Cell 1991 ; 65 : 765-7.
- 16. Forrester K, Lupold SE, Ott VL, et al. Effects of p53 mutants on wild-type p53-mediated transactivation are cell type dependent. Oncogene 1995 ; 11 : 2103-11.
- 17. Chene P. In vitro analysis of the dominant negative effect of p53 mutants. J Mol Biol 1998 ; 281 : 205-9.
- 18. Dridi W, Fetni R, Lavoie J, et al. The dominant negative effect of p53 mutants and p21 induction in tetraploid G1 arrest depends on the type of p53 mutation and the nature of the stimulus. Cancer GenetCytoGenet 2003 ; 143 : 39-49.
- 19. Chene P, Bechter E. P53 mutants without a functional tetramerisation domain are not oncogenic. J Mol Biol 1999 ; 5 : 1269-74.
- 20. Pocard M, Chevillard S, Villaudy J, et al. Different p53 mutations produce distinct effects on the ability of colon carcinoma cells to become blocked at the G1/S boundary after irradiation. Oncogene 1996 ; 12 : 875-82.
- 21. Willis A, Jung EJ, Wakefield T, Chen X. Mutant p53 exerts a dominant negative effect by preventing wild-type p53 from binding to the promoter of its target genes. Oncogene 2004 ; 23 : 2330-8.
- 22. Monti P, Campomenosi P, Ciribilli Y. Tumour p53 mutations exhibit promoter selective dominance over wild type p53. Oncogene 2002 ; 21 : 1641-8.
- 23. Notterman D, Young S, Wainger B, Levine AJ. Prevention of mammalian DNA reduplication, following the release from the mitotic spindle checkpoint, requires p53 protein, but not p53-mediated transcriptional activity. Oncogene 1998 ; 26 : 2743-51.
- 24. Walker KK, Levine AJ. Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad SciUSA 1996 ; 93 : 15335-40.
- 25. Del Sal G, Ruaro EM, Utrera R, et al. Gas1-induced growth suppression requires a transactivation-independent p53 function. Mol Cell Biol 1995 ; 15 : 7152-60.
- 26. Sorensen TS, Girling R, Lee CW, et al. Functional interaction between DP-1 and p53. Mol Cell Biol 1996 ; 16 : 5888-95.
- 27. Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003 ; 11 : 577-90.
- 28. Whitesell L, Sutphin P, An WG, et al. Geldanamycin-stimulated destabilization of mutated p53 is mediated by the proteasome in vivo. Oncogene 1997 ; 23 : 2809-16.
- 29. Lane DP. Killing tumor cells with viruses : a question of specificity. Nat Med 1998 ; 9 : 1012-3.
- 30. Ganly I, Kirn D, Eckhardt G, et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 2000 ; 3 : 798-806.