Abstracts
Résumé
Pour la quasi-totalité des classes thérapeutiques antithrombotiques actuellement utilisées et à venir, le ciblage a été initialement la conséquence d’une observation et non pas le fruit d’une recherche méthodique scientifique. Une fois la preuve de l’efficacité démontrée, le but du développement pharmaceutique a été de découvrir des familles moléculaires qui améliorent l’efficacité et les relations cinétique/dynamique. Les rares cas de développement d’une stratégie contre une cible spécifique, identifiée à partir des connaissances des mécanismes fondamentaux de la thrombogenèse, n’ont pas été des succès. La nature paraît avoir déjà exploité toutes les cibles efficaces et il semble qu’il n’est possible que de la copier en essayant de l’améliorer par quelques détails pharmacocinétiques ou galéniques attractifs. Quoiqu’il en soit, le développement de nombreuses formes moléculaires dirigées contre plusieurs cibles a lieu et la mise à disposition de molécules spécifiques des différentes cibles devrait modifier notre prise en charge des états thrombotiques chez les patients : nous allons passer d’une ère où nous cherchions à utiliser au mieux les rares thérapeutiques dont nous disposions à une ère où nous aurons à déterminer, pour chaque situation thrombotique, la meilleure cible à inhiber et le meilleur degré d’inhibition à atteindre.
Summary
New antithrombotic agents are being developed not only to improve efficacy, but also to increase safety in comparison with widely used conventional agents such as the oral anticoagulants. New anticoagulant, antiplatelet, and profibrinolytic compounds are currently under study in drug development programs, and most of those in phase II or III of development are derived from the observation of natural phenomena and merely mimic processes developed by mammalians, including humans, to avoid thrombosis, or by blood-sucking insects or animals to prevent coagulation of the blood their are feeding on. By contrast, drug candidates identified by means of rigorous research and designed to target new pathways and achieve direct and specific inhibition of factors that are presumed to play an important role in thrombogenesis have generally failed to show any benefit and sometimes even induce deleterious effects. The clinical development of new drugs, even those mimicking natural phenomena, improves our knowledge of the pathogenesis of thrombosis and sheds light, retrospectively, on previous conceptual errors. The improvement in our basic knowledge and the development of new types of drugs suggest that, in contrast to the current antithrombotic compounds that are used in a broad range of clinical settings, use of new drugs should be restricted to specific situations in which their mechanisms of action are predicted to deliver the highest medical benefit. A major obstacle resides in the fact that current drug development programs are still required to comply with long obsolete guidelines based on the characteristics of first-generation antithrombotic agents, and that do not take into account the specific mechanisms of action of new drugs. This situation should change, however, and new antithrombotic drugs should soon be able to benefit from adapted development programs that will make it possible to determine their optimal risk-benefit ratio.
Appendices
Références
- 1. Kung C, Hayes E, Mann KG. A membrane-mediated catalytic event in prothrombin activation. J Biol Chem 1994 ; 269 : 25838-48.
- 2. Butenas S, Mann KG. Kinetics of human factor VII activation. Biochemistry 1996 ; 35 : 1904-10.
- 3. Roberts HR, Hoffman M, Monroe DM. A cell-based model of thrombin generation. Semin Thromb Haemost 2006 ; 32 (suppl 1) : 32-8.
- 4. Davie EW, Kulman JD. An overview of the structure and function of thrombin. Semin Thromb Haemost 2006 ; 32 (suppl 1) : 3-15.
- 5. Ansell J, Hirsh J, Poller L, et al. The pharmacology and management of the vitamine K antagonists. The seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest 2004 ; 126 : S204-33.
- 6. Executive steering committee on behalf of the SPORTIF investigators. Stroke prevention with oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III) : randomised controlled trial. Lancet 2003 ; 362 : 1691-8.
- 7. Clement B, Lopian K. Characterization of in vitro biotransformation of new, orally active, direct thrombin inhibitor ximelagatran, an amidoxine and ester progrug. Drug Metab Disp 2003 ; 31 : 645-51.
- 8. McLean J. The thromboplastic action of cephalin. Am J Physiol 1916 ; 41 : 250-7.
- 9. Hirsh J, Raschke R. Heparin and low molecular weight heparin. The seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest 2004 ; 126 : S188-203.
- 10. Choay J, Lormeau JC, Petitou M, et al. Structural studies on a biologically active hexasaccharide obtained from heparin. Ann NY Acad Sci 1981 ; 370 : 644-9.
- 11. Blann AD, Lip GY. Venous thromboembolism. Br Med J 2006 ; 332 : 215-9.
- 12. Yusuf S, Mehta SR, Chrolavicius S, et al. Effects of fondaparinux on mortality and reinfarction in patients with ST-segment elevation myocardial infarction : the OASIS-6 randomized trial. JAMA 2006 ; 295 : 1519-30.
- 13. Koopman MM, Büller HR. Short- and long-acting synthetic pentasaccharides. J Intern Med 2003 ; 254 : 335-42.
- 14. Bal dit Sollier C, Kang C, Berge N, et al. Activity of a a synthetic hexadecasaccharide (SanOrg123781A) in a pig model of arterial thrombosis. J Thromb Haemost 2004 ; 2 : 925-30.
- 15. Markwardt F. Studies on hirudin. Arch Exp Pathol Pharmakol 1956 ; 228 : 220-1.
- 16. Weitz JI, Hudoba M, Massel D, et al. Clot-bound thrombin is protected from inhibition by heparin-antithrompbin III but is susceptible to inactivation by antithrombin III-independent inhibitors. J Clin Invest 1990 ; 86 : 385-91.
- 17. Lincoff AM, Kleiman NS, Kereiakes, et al. Long-term efficacy of bivalirudin and provisional glycoprotein IIb/IIIa blockade versus heparin and planned glycoprotein IIb/IIIa blockade during percutaneous coronary revascularieation. REPLACE-2 randomized trial. JAMA 2004 ; 292 : 696-703.
- 18. Eriksson BI, Agnelli G, Cohen AT, et al. Direct thrombin inhibitor melagatran followed by oral ximelagatran in comparison with enoxaparin for the prevention of venous thromboembolism after total hip or knee replacement. The METHRO III study. Thromb Haemost 2003 ; 89 : 288-96.
- 19. Fiessinger JN, Huisman MV, Davidson BL, et al. Ximelagatran versus low molecular weight heparin and warfarin for the treatment of deep vein thrombosis. JAMA 2005 ; 293 : 681-9.
- 20. Eriksson BI, Dahl OE, Büller HR, et al. A new oral thrombin inhibitor, dabigatran etexilate, compared with enoxaparin for the prevention of thromboembolic events following total hip and knee replacement : the BISTRO II randomized trial. J Thromb Haemost 2005 ; 3 : 103-11.
- 21. Hampton T. New oral anticoagulants show promise. JAMA 2006 ; 295 : 743-4.
- 22. Turpie AG, Fisher WD, Bauer KA, et al. BAY 59-7939: an oral, direct factor Xa inhibitor for the prevention of venous thromboembolism in patients after total knee replacement. A phase II dose-ranging study. J Thromb Haemost 2005 ; 3 : 2479-86.
- 23. Eriksson BI, Borris L, Dahl OE, et al. Oral, direct factor Xa inhibition with BAY 59-7939 for the prevention of venous thromboembolism after total hip replacement. J Thromb Haemost 2006 ; 4 : 121-8.
- 24. Houston DS. Tissue factor : a therapeutic target for thrombotic disorders. Expert Opin Ther Targets 2002 ; 6 : 159-74.
- 25. Roth GJ, Stanford N, Majerus PW. Acetylation of prostaglandin synthase by aspirin. Proc Natl Acad Sci USA 1975 ; 72 : 3073-7.
- 26. Antithrombotic Trialists Collaboration. Collaborative metaanalysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high-risk patients. Br Med J 2002 ; 324 : 71-86.
- 27. Patrono C. Aspirin resistance : definition, mechanisms and clinical read-outs. J Thromb Haemost 2003 ; 1 : 1710-3.
- 28. Fiessinger JN, Schafer M. Trial of iloprost versus aspirin treatment for critical limb ischaemia of thromboangiitis obliterans. The TAO study. Lancet 1990 ; 335 : 555-7.
- 29. Quinn MJ, Fitzgerald DJ. Ticlopidine and clopidogrel. Circulation 1999 ; 100 : 1667-72.
- 30. Wiviott SD, Antman EM, Winters KJ, et al. Randomized comparison of prasugrel (CS-747, LY640315) a novel thienopyridine P2Y12 antagonist, with clopidogrel in percutaneous coronary intervention : results of the Joint utilization of medications to block platelets optimally (JUMBO)-TIMI 26 trial. Circulation 2005 ; 111 : 3366-73.
- 31. Coller BS. Platelet GPIIb/IIIa antagonists : the first antiintegrin receptor therapeutics. J Clin Invest 1997 ; 99 : 1467-71.
- 32. Batchelor WB, Tolleson TR, Huang Y, et al. Randomized comparison of platelet inhibition with abciximab, tirofiban and eptifibatide during percutaneous coronary intervention in acute coronary syndromes : the COMPARE trial (Comparison of measurements of platelet aggregation with aggrastat, reopro, and eptifibatide). Circulation 2002 ; 106 : 1470-6.
- 33. Holmes MB, Sobel BE, Cannon CP, et al. Increased platelet reactivity in patients given orbofiban after an acute coronary syndrome : an OPUS-TIMI 16 substudy. Am J Cardiol 2000 ; 85 : 491-3.
- 34. Collen D. The plasminogen (fibrinolytic) system. Thromb Haemost 1999 ; 82 : 259-70.
- 35. Linjen HR, Collen D. Fibrinolytic agents : mechanisms of activity and pharmacology. Thromb Haemost 1995 ; 74 : 387-90.
- 36. Damaschun G, Damacshun H, Gast K, et al. Physical and conformational properties of staphylokinase in solution. Biochim Biophys Acta 1993 ; 1161 : 244-8.
- 37. Friederich P, Levi M, Biemond B, et al. Low-molecular weight inhibitor of PAI-1 (XR5118) promotes endogenous fibrinolysis and reduces postthrombolysis thrombus growth in rabbits. Circulation 1997 ; 96 : 916-21.
- 38. Romo GM, Dong JF, Schade AJ, et al. The glycoprotein Ib-IX-V complex is a platelet counter-receptor for P-selectin. J Exp Med 1999 ; 190 : 803-13.
- 39. Joop K, Berkmans RJ, Niewland R, et al. Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb Haemost 2001 ; 85 : 810-20.