Abstracts
Résumé
Depuis son introduction en 1990, la microscopie de fluorescence excitée à deux photons (Fluo-2P) s’est peu à peu imposée comme une méthode incontournable d’imagerie de tissus intacts à l’échelle sub-cellulaire. En effet, la caractéristique la plus remarquable de la microscopie multiphotonique est de maintenir une résolution tridimensionnelle micrométrique lors de l’observation en profondeur d’un milieu optiquement diffusant. Combinée aux technologies de protéines-fusion (type GFP), cette approche est aujourd’hui utilisée dans de nombreux domaines, notamment en neurophysiologie. Un autre attrait de ce type d’imagerie réside dans l’utilisation possible d’autres phénomènes optiques non linéaires (c’est-à-dire impliquant l’interaction simultanée de plusieurs photons avec une molécule observée) comme source de contraste. Ainsi, les microscopies par génération de second harmonique (GSH) et par génération de troisième harmonique (GTH) permettent également d’observer des milieux complexes et fournissent des informations complémentaires par rapport à l’imagerie de fluorescence. Certaines structures cellulaires ou tissulaires fournissent, en effet, ce type de réponse optique sans nécessiter de marquage exogène. La microscopie GSH permet, par exemple, de détecter le collagène fibrillaire et la microscopie GTH permet d’observer sans marquage le développement embryonnaire de petits organismes.
Summary
One principal advantage of multiphoton excitation microscopy is that it preserves its three-dimensional micrometer resolution when imaging inside light-scattering samples. For that reason two-photon-excited fluorescence microscopy has become an invaluable tool for cellular imaging in intact tissue, with applications in many fields of physiology. This success has driven increasing interest in other forms of nonlinear microscopy that can provide additional information on cells and tissues, such as second- (SHG) and third- (THG) harmonic generation microscopies. In recent years, significant progress has been made in understanding the contrast mechanisms of these recent methodologies, and high-resolution imaging based on intrinsic sources of signal has been demonstrated in cells and tissues. Harmonic generation exhibits structural rather than chemical specificity and can be obtained from a variety of non-fluorescent samples. SHG is observed specifically in dense, non-centrosymmetric arrangements of polarizable molecules, such as collagen fibrils, myofilaments, and polarized microtubule bundles. SHG imaging is therefore emerging as a novel approach for studying processes such as the physiopathological remodelling of the collagen matrix and myofibrillogenesis in intact tissue. THG does not require a non-centrosymmetric system ; however no signal can be obtained from a homogeneous medium. THG imaging therefore provides maps of sub-micrometer heterogeneities (interfaces, inclusions) in unstained samples, and can be used as a general purpose structural imaging tool. Recent studies showed that this technique can be used to image embryo development in small organisms and to characterize the accumulation of large lipid bodies in specialized cells. SHG and THG microscopy both rely on femtosecond laser technology and are easily combined with two-photon microscopy.
Appendices
Références
- 1. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990 ; 248 : 73-6.
- 2. Zipfel WR, Williams RM, Webb WW. Nonlinear magic : multiphoton microscopy in the biosciences. Nat Biotechnol 2003 ; 21 : 1369-77.
- 3. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods 2005 ; 2 : 932-40.
- 4. Moreaux L, Sandre O, Blanchard-Desce M, et al. Membrane imaging by simultaneous second-harmonic generation and two-photon microscopy. Opt Lett 2000 ; 25 : 320-2.
- 5. Moreaux L, Sandre O, Charpak S, et al. Coherent scattering in multi-harmonic light microscopy. Biophys J 2001 ; 80 : 1568-74.
- 6. Sacconi L, Dombeck DA, Webb WW. Overcoming photodamage in second-harmonic generation microscopy : real-time optical recording of neuronal action potentials. Proc Nat Acad Sci USA 2006 ; 103 : 3124-9.
- 7. Freund I, Deutsch M, Sprecher A. Optical second-harmonic microscopy, crossed-beam summation and small-angle scattering in rat-tail tendon. Biophys J 1986 ; 50 : 693-712.
- 8. Campagnola PJ, Millard AC, Terasaki M, et al. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J 2002 ; 82 : 493-508.
- 9. Stoller P, Reiser KM, Celliers PM, et al. Polarization-modulated second harmonic generation in collagen. Biophys J 2002 ; 82 : 3330-42.
- 10. Wang W, Wyckoff JB, Frohlich VC, et al. Single cell behavior in metastatic primary mammary tumors correlated with gene expressions patterns revealed by molecular profiling. Cancer Res 2002 ; 62 : 6278-88.
- 11. Cox G, Kable E, Jones A, et al. Three-dimensional imaging of collagen using second harmonic generation. J Struct Biol 2003 ; 141 : 53-62.
- 12. Williams RM, Zipfel WR, Webb WW. Interpreting second-harmonic generation images of collagen i fibrils. Biophys J 2005 ; 88 : 1377-86.
- 13. Zoumi A, Lu X, Kassab GS, et al. Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophys J 2004 ; 87 : 2778-86.
- 14. Both M, Vogel M, Friedrich O, et al. Second harmonic imaging of intrinsic signals in muscle fibers in situ. J Biomed Opt 2004 ; 9 : 882-92.
- 15. Boulesteix T, Beaurepaire E, Sauviat MP, et al. Second-harmonic microscopy of unstained living cardiac myocytes : Measurements of sarcomere length with 20 nm accuracy. Opt Lett 2004 ; 29 : 2031-3.
- 16. Plotnikov SV, Millard AC, Campagnola PJ, et al. Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophys J 2006 ; 90 : 693-703.
- 17. Dombeck DA, Kasischke KA, Vishwasrao HD, et al. Uniform polarity microtubule assemblies imaged in native brain tissues by second-harmonic generation microscopy. Proc Nat Acad Sci USA 2003 ; 100 : 7081-6.
- 18. Cox G, Moreno N, Feijo J. Second-harmonic imaging of plant polysaccharides. J Biomed Optics 2005 ; 10 : 02413.
- 19. Brown E, McKee T, diTomaso E, et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second harmonic generation. Nat Med 2003 ; 9 : 796-801.
- 20. Zipfel WR, Williams RM, Christie R, et al. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second-harmonic generation. Proc Nat Acad Sci USA 2003 ; 100 : 7075-80.
- 21. König K, Riemann I. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J Biomed Opt 2003 ; 8 : 432-9.
- 22. Boulesteix T, Pena AM, Pagès N, et al. Micrometer-scale ex vivo multiphoton imaging of unstained arterial wall structure. Cytometry A 2006 ; 69 : 20-6.
- 23. Hernest M, Pena AM, Strupler M, et al. Nouvelle approche des fibroses par microscopie multiphotonique avec génération de second harmonique. Med Sci(Paris) 2006 ; 22 (sous presse).
- 24. Pena AM, Boulesteix T, Dartigalongue T, et al. Chiroptical effects in the second harmonic signal of collagens i and iv. J Am Chem Soc 2005 ; 127 : 10314-22.
- 25. Barad Y, Eisenberg H, Horowitz M, et al. Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 1997 ; 70 : 922-4.
- 26. Squier JA, Müller M, Brakenhoff GJ, et al. Third harmonic generation microscopy. Opt Express 1998 ; 3 : 315-24.
- 27. Oron D, Yelin D, Tal E, et al. Depth-resolved structural imaging by third-harmonic generation microscopy. J Struct Biol 2004 ; 147 : 3-11.
- 28. Sun CK, Chu SW, Chen SY, et al. Higher harmonic generation microscopy for developmental biology. J Struct Biol 2004 ; 147 : 19-30.
- 29. Débarre D, Supatto W, Farge E, et al. Velocimetric third-harmonic generation microscopy : micrometer-scale quantification of morphogenetic movements in unstained embryos. Opt Lett 2004 ; 29 : 2881-3.
- 30. Débarre D, Supatto W, Pena AM, et al. Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 2006 ; 3 : 47-53.
- 31. Supatto W, Débarre D, Moulia B, et al.In vivo modulation of morphogenetic movements in Drosophila embryos with femtosecond laser pulses. Proc Nat Acad Sci USA 2005 ; 102 : 1047-52.
- 32. Cheng JX, Xie XS. Green’s function formulation for third harmonic generation microscopy. J Opt Soc Am B 2002 ; 19 : 1604-10.
- 33. Débarre D, Supatto W, Beaurepaire E. Structure sensitivity in third-harmonic generation microscopy. Opt Lett 2005 ; 30 : 2134-6.