Abstracts
Résumé
L’observation de la dynamique des événements moléculaires dans la cellule in situ présente une série de défis, notamment la capacité de suivre ces événements avec le maximum de résolution spatiale et temporelle tout en minimisant l’interférence avec la biologie du tissu et de la cellule. L’exploitation récente d’approches fondées sur l’optique non-linéaire, telle que la microscopie par balayage laser de fluorescence produite par excitation à deux photons, a permis de faire des progrès énormes dans ce domaine, notamment parce qu’elle permet de faire des mesures dans un espace très confiné à l’intérieur du tissu intact et à des profondeurs inaccessibles avec la microscopie linéaire conventionnelle. En minimisant l’excitation indésirable du tissu en dehors du point focal, on améliore la résolution et la sensibilité, on simplifie le système optique et on minimise la phototoxicité. Ces avantages sont à la source du succès de la microscopie à deux photons pour l’imagerie cellulaire fonctionnelle. Des percées récentes en optique/photonique permettent d’envisager d’améliorer davantage la résolution spatiale et temporelle de ce type d’imagerie et la capacité de sonder encore plus profondément dans le tissu pour repousser les limites de la biochimie fonctionnelle et de la biologie cellulaire actuelles.
Summary
One of the main challenges of modern biochemistry and cell biology is to be able to observe molecular dynamics in their functional context, i.e. in live cells in situ. Thus, being able to track ongoing molecular events with maximal spatial and temporal resolution (within subcellular compartments), while minimizing interference with tissue biology, is key to future developments for in situ imaging. The recent use of non-linear optics approaches in tissue microscopy, made possible in large part by the availability of femtosecond pulse lasers, has allowed major advances on this front that would not have been possible with conventional linear microscopy techniques. Of these approaches, the one that has generated most advances to date is two-photon laser scanning fluorescence microscopy. While this approach does not really provide improved resolution over linear microscopy in non absorbing media, it allows us to exploit a window of low absorbance in live tissue in the near infrared range. The end result is much improved tissue penetration, minimizing unwanted excitation outside the focal area, which yields an effective improvement in resolution and sensitivity. The optical system is also simplified and, more importantly, phototoxicity is reduced. These advantages are at the source of the success of two-photon microscopy for functional cellular imaging in situ. Yet, we still face further challenges, reaching the limits of resolution that conventional optics can offer. Here we review some recent advances in optics/photonics approaches that hold promises to improve our ability to probe the tissue in finer areas, at faster speed, and deeper into the tissue. These include super-resolution techniques, introduction of non paraxial optics in microscopy and use of amplified femtosecond lasers, yielding enhanced spatial and temporal resolution as well as tissue penetration.
Appendices
Références
- 1. Göppert-Mayer M. Uber elementarakte mit zwei quanten-sprüngen. Ann Phys 1931 ; 9 : 273-95.
- 2. Kaiser W, Garrett CGB. Two-photon excitation in CaF2Eu2+. Phys Rev Lett 1961 ; 7 : 229-31.
- 3. Peticolas WL, Goldsborough JP, Rieckhoff KE. Double photon excitation in organic crystals. Phys Rev Lett 1963 ; 10 : 43-5.
- 4. Sheppard CJR, Kompfner R. Resonant scanning optical microscope. Appl Opt 1978 ; 17 : 2879-82.
- 5. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 1990 ; 248 : 73-6.
- 6. Davidovits P, Egger MD. Scanning laser microscope. Nature 1969 ; 233 : 831.
- 7. Xu C, Guild J, Webb W, Denk W. Determination of absolute two-photon excitation cross sections by in situ second-order autocorrelation. Opt Lett 1995 ; 20 : 2372.
- 8. Xu C, Webb WW. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B Optic Physics 1996 ; 13 : 481.
- 9. Schilders SP, Gu M. Limiting factors on image quality in imaging through turbid media under single-photon and two-photon excitation. Microsc Microanal 2000 ; 6 : 156-60.
- 10. Westphal V, Hell SW. Nanoscale resolution in the focal plane of an optical microscope. Phys Rev Lett 2005 ; 94 : 143903/1-4.
- 11. Willig KI, Rizzoli SO, Westphal V, et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 2006 ; 440 : 935-9.
- 12. Hell SW, Lindek S, Cremer C, Stelzer EHK. Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution. Appl Phys Lett 1994 ; 64 : 1335-7.
- 13. Hell SW, Dyba M, Jakobs S. Concepts for nanoscale resolution in fluorescence microscopy. Curr Opin Neurol 2004 ; 14 : 599-609.
- 14. Varin C, Piché M. Analytical calculation of the longitudinal electric field resulting from the tight focusing of an ultrafast transverse magnetic beam. J Opt Soc Am A 2006 (sous presse).
- 15. Zipfel W, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotech 2003 ; 21 : 1369-77.
- 16. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods 2005 ; 2 : 932-40.
- 17. Wang H, Backus S, Chang Z, et al. Generation of 10-W average-power, 40-TW peak-power, 24-fs pulses from a Ti:sapphire amplifier system. J Opt Soc Am B 1999 ; 16 : 1790-4.
- 18. Beaurepaire E, Oheim M, Mertz J. Ultra-deep two-photon fluorescence excitation in turbid media. Opt Commun 2001 ; 188 : 25-9.
- 19. Theer P, Hasan MT, Denk W. Two-photon imaging to a depth of 1000 microns in living brains by use of a Ti:Al2O3 regenerative amplifier. Opt Lett 2003 ; 28 : 1022-4.
- 20. Cognet L, Groc L, Lounis V, Choquet D. Multiple routes for glutamate receptor trafficking: surface diffusion and membrane traffic cooperate to bring receptors to synapses. Sci STKE 2006 ; 2006 : pe13.
- 21. Larson DR, Zipfel WR, Williams RM, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003 ; 300 : 1434-6.
- 22. Wiseman PW, Squier JA, Ellisman MH, Wilson KR. Two-photon image correlation spectroscopy and image cross-correlation spectroscopy. J Microsc 2000 ; 200 : 14-25.
- 23. Mehta AD, Jung JC, Flusberg BA, Schnitzer. Fiber optic in vivo imaging in the mammalian nervous system. Curr Opin Neurobiol 2004 ; 14 : 1-12.
- 24. Sakmann B, Neher E. Single-channel recording. New York : Plenum Press, 1995.
- 25. Yuste R, Denk W. Dentritic spines as basic functional units of neuronal integration. Nature 1995 ; 375 : 682-4.
- 26. Oertner T, Sabatini BL, Nimchinsky EA, Svoboda K. Facilitation at single synapses probed with optical quantal analysis. Nat Neurosci 2002 ; 5 : 657-64.
- 27. Yasuda R, Nimchinsky EA, Scheuss V, et al. Imaging calcium concentration dynamics in small neuronal compartments. Sci STKE 2004 ; 2004 : l5.
- 28. Tsien R, Bacskai B. Video-rate confocal microscopy. In : Palwley JB, ed. Handbook of biological confocal microscopy. New York : Plenum Press, 1995 : 459-78.
- 29. Salomé R, Kremer Y, Dieudonne S, et al. Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. J Neurosci Methods 2006 : 154 :161-74.
- 30. Stosiek C, Garaschuk O, Holthoff K, Konnerth A. In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad SciUSA 2003 ; 100 : 7319-24.
- 31. Cossart R, Aronov D, Yuste R. Attractor dynamics of network UP states in the neocortex. Nature 2003 ; 423 : 283-8.
- 32. Cossart R, Ikegaya Y, Yuste R. Calcium imaging of cortical networks dynamics. Cell Calcium 2005 ; 37 : 451-7.
- 33. Fittinghoff DN, Wisemann PW, Squier JA. Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy. OSA 2000 ; 7 : 273-9.
- 34. Davidson N, Friesem AA, Hasman E. Holographic axilens : high resolution and long focal depth. Opt Lett 1991 ; 16 : 523-5.
- 35. Sanyal S, Ghosh A. High focal depth with a quasi-bifocus birefringent lens. Appl Opt 2000 ; 39 : 2321-5.
- 36. Dufour P, McCarthy N, De Koninck Y. Imaging of biological tissues: overview of optical configurations for linear and two-photon microscopy. Physics in Canada 2006 ; 62 : 75-82.
- 37. Dufour P, Piché M, De Koninck Y, McCarthy N. Two-photon excitation fluorescence microscopy with high depth of field using an axicon. Appl Opt 2006 (sous presse).
- 38. Wilson BC. Photodynamic therapy. In : Advances in biophotonics. NATO science series. Amsterdam : IOS Press, 2005.